
Building Extensible Program Logics
with Effect Handlers

New England System Verification Day
October 3, 2025

Zichen Zhang; Simon Gregersen; Joseph Tassarotti

2

Program Logics for New Features
PART 00: Introduction

Crash-
Recovery

Distributed
Execution

Probability

Weak
Memory

Persistent
Memory

3

Traditional Approach

Soundness Theorem

Grammar

Operational
Semantics Reasoning Rules

PART 00: Introduction

4

Our approach

Effect Handlers

(1) Write interpreter

(2) Prove specs for interpreters

(3) Verifying using rules derived
from interpreter specs

Logic Developer

Program Verifier

using

Hazel [de Vilhena
& Pottier (2021)]

using

(0) A pure calculus + logic for it

⇒⇒⇒

PART 00: Introduction

5

Effect Handlers

Exception
+ k (continuation)

PART 00: Introduction

6

Our contribution
● Handler-based logics for

○ Concurrency

○ Crash recovery

○ Distributed execution
● Stronger reasoning rules
● Relational logic for refinement reasoning

PART 00: Introduction

7

Hazel Logic [de Vilhena & Pottier (2021)]

PART 01: Program Logic

Standard Hoare triple, plus
● Effects raised by e are handled by protocol Ψ.

8

Hazel Protocol

If raising an effect E with value v satisfying input condition P,
the handler will return a value w satisfying output condition Q.

Input satisfies POutput satisfies Q

PART 01: Program Logic

9

Reasoning in Hazel

● Effect raising rule

PART 01: Program Logic

Ψ

where Ψ =

10

Reasoning in Hazel
PART 01: Program Logic

11

Sum Protocol
PART 01: Program Logic

12

Sum Protocol
PART 01: Program Logic

13

Installing Handlers
PART 01: Program Logic

14

Concurrency

e3

e0

e2

Thread Pool

e1 e1’* do (E, v)

e1

PART 01: Program Logic

15

Execution Trace

p = pure step d = effect step “do(...)”

Our semantics
p0p0d0

p2 p2 p2 d2

p1 d1 p1 p1 d1

p0d0

p3 d3

p0 p0d0

p2 p2 p2 d2

p1 d1 p1 p1 d1

p0 d0

p3 d3

Standard semantics
(preemptive)

e1 e1’* do (E, v)

PART 01: Program Logic

16

Invariants

e = pure*, do(...)

Is this rule sound w.r.t. standard semantics?

Our semantics
p0p0d0

p2 p2 p2 d2

p1 d1 p1 p1 d1

p0d0

p3 d3

p0 p0d0

p2 p2 p2 d2

p1 d1 p1 p1 d1

p0 d0

p3 d3

Standard semantics

PART 01: Program Logic

Iris invariant access ruleour invariant access rule

17

Relational Logic
PART 02: Relational Logic

Informally,

Is this rule sound w.r.t.
standard semantics?

under standard semantics under our semantics

⇐

(contextual refinement)

18

Refinement Proof
p0d0 p2 p2 p2 d2 p1 d1 p1 p1 d1 p0d0 p3 d3our semantics

standard semantics

cannot yield
(switch thread)

may yield
p0d0p2 p2 p2 d2p1 d1 p1 p1 d1p0 d0p3 d3p0

p0

under standard semantics under our semantics

PART 02: Relational Logic

19

Refinement Proof

p0d0 p2 p2 p2 d2 p1 d1 p1 p1 d1 p0d0 p3 d3

our semantics

standard semantics p0d0p2 p2 p2 d2p1 d1 p1 p1 d1p0 d0p3 d3p0

p0

under standard semantics under our semantics⇐
(evidence accumulation)

PART 02: Relational Logic

p0d0 p2 p2 p2 d2 p1 d1 p1 p1 d1 p0d0 p3 d3p0

emulated
standard semantics

may yield

20

Distributed System with IronFleet-style
Atomic Block [Hawblitzel et al. (2015)]

r = receive p = pure step s = send

r0 r0 p0p0 s0 r1 p1 s1 p3 s3 r2 p2 s2 s1 r3s0

node 0

node 1 node 2

node 3

unreliable

r0 r0 p0p0 s0r1 p1 s1p3 s3r2 p2 s2 s1 r3s0

IronFleet-style

standard

PART 02: Relational Logic

21

Distributed System with IronFleet-style
Atomic Block [Hawblitzel et al. (2015)]

r0 r0 p0p0 s0 r1 p1 s1 p3 s3 r2 p2 s2 s1 r3s0

PART 02: Relational Logic

22

Summary
● Handler-based logics for

○ Concurrency with stronger invariant rule

○ Distributed execution with IronFleet-style atomic blocks

○ Crash recovery with Perennial-style crash invariants

○ Asynchronous disk based on crash-aware prophecy variables
● Relational logic for refinement reasoning

