‘A NYU

Building Extensible Program Logics
with Effect Handlers

Zichen Zhang; Simon Gregersen; Joseph Tassarotti

New England System Verification Day
October 3, 2025

PART 00: Introduction

Program Loglcs for New Features

Crash-
Recovery

it

g ‘ s
N g% e
R
x 7 NN N N
‘-" ’.\; ‘
o < 7 ’,) .)
7 Y °
0’) / Distributed s i
—_— /

Execution

E
Z
<
o

con
o

i Ftgdrnil Vg

OOOOOOOOOOOOOOOOOOO

Tradltlonal Approach

Operational
Semantics

[e:=ux|e(ex) |-] [(e,...)?(e’,...)} [{P}GA{\’U-Q(’U)H

Grammar
—[Soundness Theorem }—

Reasoning Rules

NYU

PART 00: Introduction

Our approach
(O) A pure calculus + logic for it)\@

pe

A N\
o heap_run(e) = -
(1) Write interpreter (A
| conc_run(e) =
using Effect Handl [. i
ect Handlers distr run(e) é _ Logic Developer

(2) Prove specs for interpreters

using Hazel [de Vilhena

= { } ref(v) {---}
& Pottier (2021)] [{ - } heap_run(e) {--- }J

SURREER
(3) Verifying using rules derived {-- ‘} le—v{-}
from interpreter specs

" Program Verifier
NYU

4

ducti

Effect Handlers

NYU

try
let (ALLOC, 1){—\

=do
t © = do(LOAD,) in
assert(x = 1)

ith

ALLOC(v |k = k(-)
| LOAD(!, k) = - k(---)
| STORE((l,v), k)= -+ ;k(--+)

| return(v) = v

end

Exception
+ K (continuation)

PART 00: Introduction

Our contribution

® Handler-based logics for

O Concurrency
O Crash recovery

O Distributed execution
® Stronger reasoning rules

® Relational logic for refinement reasoning

wRocaq |ris

NYU

Hazel Logic [de Vilhena & Pottier (2021)]

Proe ([V]) {v.Qv);

Standard Hoare triple, plus
® Effects raised by e are handled by protocol V.

NYU

PART O1: Program Logic

Hazel Protocol
{P} € <‘\P‘> {”UQ(U)} U= [P] (E,v) [w.Q(w)] | ---

If raising an effect E with value v satisfying input condition P,
the handler will return a value w satisfying output condition Q.

Output satisfies Q \Ij‘
€13
let w = do(E, v) in
€2

Input satisfies P

NYU

rogram Logic

Reasoning in Hazel

® Effect raising rule

P — P’ Vw. Q' (w) = Q(w)

{P} do(E,v) 7

where ¥ = [P'] (E,v) [w. Q" (w)]

) {w. Q(w)}

Reasoning in Hazel

P — P’ Vw. Q' (w) = Q(w)
{P} do(E,v) (| [P] (E,v) [w.Q"(w)] |) {w.Q(w)}

load = [l +] (LOAD,!) [w.w = z * [> 2]

Il & do(LOAD, [)
{l = x} U {|load|) {v.v =2 — x}

NYU

Sum Protocol
{P}e (V) {v.Qv)} ¥ +u=T; + T,

{P} do(E,v) (1) {w.Q(w)} vV {P} do(E,v) (|¥s]) {w.Q(w)}

1P} do(E, v) (|W) + Ws]) {w. Q(w)}

NYU

Sum Protocol
{P} do(E,v) (V1) {w. Q(w)} V{P} do(E,v) (|¥2]) {w.Q(w)}

{P} do(E,v) (|¥; + Wy) {w.Q(w)}
alloc £ [True] (ALLOC, z) [I.1 —]

load £ [I + z] (LOAD,) [w.w = x * [> 1]

store = [l + x] (STORE, (1,9)) [w.w = () * | > y]
Il & do(LOAD, () heap £ alloc + load + store

{l = 2} 1l {|heap|) {v.v=x % — x}
ENYu

PART O1: Program Logic

Installing Handlers

NYU

try try try
e {P} e (|state + heap + conc|) {v.Q(v)}
with
| FORK(f,h) = - | --- conc run
end
with
| ALLOC(v, h) = -+ | -+ heap run
end
with
| READ(_,h) = --- | --- state run
end

13

PART O1: Program Logic

Concurrency

conc run

{P} e (|state 4+ heap + conc|) {v.Q(v)}

*

Thread Pool

NYU

e,r—do (E, v)

o —

state run

PART O1: Program Logic

Execution Trace

Standard semantics
(preemptive)

Qur semantics

NYU

Po

Po

P

P2

Pz

Po

Po

P

A

do (E, v)

Po

P

P2

P2

Po

P

P

P

P2

P2

P2

d,

Pz

ds

p = purestep d = effect step “do(...)"

PART O1: Program Logic

Invariants

Stadbdesdrzamiosics

PolPo/dol Poldo Poldo

P di 1| [Pa|Pa]Ch] [P

P2 PP P2dop, P2 da

Pz ds

Pz

s invariant access rule

(P} e (1)) {v.P*Q)} D)

e = pure*, do(...)

P

= {True} e (V) {v.Q(v)}

NYU Is this rule sound w.r.t. standard semantics?

PART 02: Relational Logic

Relational LOgiC s this rule sound w.r.t.

standard semantics?

{P} e Zer (VW) {v.Qv)}
J

€1 5 €9 (contextual refinement)

Informally, Ve; —™* vy. dey —™ v9.v1 & 9
e under standard semantics < e under our semantics

NYU

17

PART 02: Relational Logic

Refinement Proof

our semantics PolPo@0P2P2 P2 92| Ch| P11 S Po@oP
cannotyield| =~ .
(switch thread

may vyield

standard semantics Po|lP2 p1 pz podo d1 pz p1 pz d3 dz Po p1 d

: do

e under standard semantics < e under our semantics

NYU

18

PART 02: Relational Logic

Refinement Proof

our semantics

emulated
standard semantics

standard semantics

Po

nop

Po

2

2

2

P

P

P

Po

ok

Po

do

2

2

2

O

Oy

O

Po

Pz

Po

2

O

ok

Po

do

2

O

2

ds

Po

O

d

do

\

may vyield

e under standard semantics < e under our semantics

NYU

0

yield < nop (evidence accumulation)

Relational Lo

Distributed System with IronFleet-style
Atomic Block [Hawblitzel et al. (2015)]

r=receive p=purestep s=send

_ Y unreliable
IronFleet-style [Code .nreliable { — J
I’o rAO F})\O F})\O SAO I:I I:z'l SA'l 83 53 ';2 E)\Z SAZ S-| SO r3 = J —
""""" 1 node O]‘

0|P3|lo| 112 Po|P0/P2/S0|53P1/S2|S1|S1|S0| '3 { node3}
standard

NYU 20

ooooooooooooooooooooo

Dlstrlbuted System with IronFleet-style
Atomic Block [Hawblitzel et al. (2015)]

{P} e (|¥]) {v.P*Q(v)} e = (recv | pure)*,send
P A{True} e (|V]) {v.Q(v)}

Fo|Mo|PolPo/So| I1[P1]S1P3S3| 210252 S1S0] '3

NYU

Summary
® Handler-based logics for {P} e (V) {v.Q(v)}

O Concurrency with stronger invariant rule
O Distributed execution with IronFleet-style atomic blocks
O Crash recovery with Perennial-style crash invariants

O Asynchronous disk based on crash-aware prophecy variables
® Relational logic for refinement reasoning

{P} e T e (Wi Waf) {v.Qv)}
Thank you for your attention!
KA nNYu Y

