
Building Extensible Program Logics through Effect Handlers

ZICHEN ZHANG, New York University, USA

SIMON ODDERSHEDE GREGERSEN, New York University, USA

JOSEPH TASSAROTTI, New York University, USA

One strategy for reasoning about programs that have certain kinds of effects is to use program logics that

provide specialized rules for reasoning about these effects. However, developing program logics requires

skills that are distinct from those needed for using program logics, making the development of new logics

challenging and less accessible. Moreover, when developing new logics, it can be difficult to reuse components

from prior logics or combine support for different effects.

In this paper, we propose an approach for building extensible program logics based on effect handlers. Our

starting point is an expressive program logic for reasoning about programs written in a pure, sequential lan-

guage with support for effect handlers. Within this language, we implement handlers that model concurrency,

distributed execution, and crash-recovery behavior. Then, by proving properties about these handlers, we

extend the program logic and derive expressive rules for reasoning about these effects. In some cases, this

approach leads to stronger reasoning rules than those found in prior program logics targeting these features.

In addition, we develop a relational logic for proving contextual refinements between programs using

effects. As with unary reasoning, handlers enable this relational logic to be developed in an extensible way.

1 Introduction
Program logics have proven to be a powerful tool for program verification. As a result, a variety

of program logics have been developed for challenging program features, including pointers [42],

concurrency [26, 37, 38], weak memory [16, 28, 30, 34, 51, 52], distributed execution [29, 43, 56],

crash recovery [12–14, 36, 41], and randomness [2, 3, 5–8, 23, 47], among others.

Traditionally, a program logic is developed by proving that a collection of reasoning rules is

sound with respect to an operational or denotational semantics for a language. However, following

this traditional approach is challenging for several reasons. First, the development of program

logics requires skills that are distinct from those needed for using program logics, making the

development of new logics less accessible. Second, when developing new logics, it can be difficult

to reuse components or port a particular feature from a different logic. In reality, many important

computer systems combinemany of the features described in the previous paragraph, yet developing

logics that provide support for such combinations of features requires significant work.

Recently, Vistrup et al. [55] proposed an alternative approach to developing program logics

that addresses the re-usability problem. Starting from a minimal, pure lambda calculus, they

incrementally add effects to this language by giving a denotational semantics in terms of ITrees [58].

On the logic side, one gives rules that logically “interpret” or “handle” the events in the generated

ITree. The soundness of the logic is established in a modular way by relating these logical handlers

for events in the ITree to an interpretation function that “executes” the events. While this approach

addresses the problem of re-usability, it does not address the first accessibility issue: it requires

understanding the formalism of ITrees and their denotation, and the adequacy proofs require a form

of reasoning that is different from the task of using the program logic to reason about programs.

Moreover, it is unclear how to use ITrees to account for certain types of program effects or logic

features, such as prophecy variables.

This paper advocates for an alternative approach to developing program logics by using effect
handlers [39, 40] to model all program effects. Effect handlers are a language feature that enable

Authors’ Contact Information: Zichen Zhang, New York University, New York, New York, USA, zichenzhang@nyu.edu;

Simon Oddershede Gregersen, New York University, New York, New York, USA, s.gregersen@nyu.edu; Joseph Tassarotti,

New York University, New York, New York, USA, jt4767@nyu.edu.

https://orcid.org/0009-0004-1151-6149
https://orcid.org/0000-0001-6045-5232
https://orcid.org/0000-0001-5692-3347
https://orcid.org/0009-0004-1151-6149
https://orcid.org/0000-0001-6045-5232
https://orcid.org/0000-0001-5692-3347

2 Zhang et al.

programmers to define custom effects in a modular and compositional way. Moreover, recent

work has shown how to develop program logics for reasoning about effect handlers [17–20]. For

example, using these logics, it is possible to verify an effect handler that implements a mutable

state effect and derive a specification that resembles the usual separation logic rules for reasoning

about pointers. As a result, reasoning about a client program that uses this state effect handler

looks just like doing a standard separation logic proof about a program that uses built-in primitive

state. However, prior program logics for effect handlers have considered a setting where effect

handlers are added on top of a language that already has various other forms of primitive effects

built in, such as mutable references and concurrency. This makes sense for verifying examples that

involve a subtle interaction between primitive effects and effect handlers, but it means that the

soundness proofs of these logics combine the complexity of primitive effects and effect handlers.

In this work, we instead use effect handlers to bootstrap an expressive program logic for a

range of effects. Our starting point is a minimal core effect handler language called FicusLang that

has just two primitive effects: non-deterministic choice and recording an action to a trace. For

reasoning about programs written in FicusLang, we develop Ficus, a separation logic for effect

handlers that is an adaptation of an earlier logic called Hazel [18]. Using FicusLang, we then

implement handlers to model mutable state, shared-memory concurrency, distributed execution

over unreliable networks, and crash-recovery with durable state. For each effect, we apply Ficus

to verify the handler implementations and obtain proof rules that are analogous to the reasoning

principles derived in prior specialized program logics for these effects.

The handler-based approach even allows us to derive stronger proof rules than prior work.

There are two main reasons. First, with the handler-based approach, we can build up effects in a

hierarchical way, using earlier effects in the definition of handlers for later effects. Then, when

verifying those later effects, we can use the proof rules from the earlier effects. For example, we show

in §5 how to derive local prophecy variables [1, 27] from a simpler global prophecy by implementing

local prophecy variables as an effect handler. Later, when implementing the handlers for crashes

and recovery in §6, we attach prophecy variables to non-deterministic choices made during crashes,

which allows client proofs to reason about when crashes will occur.

A second source of stronger proof rules arises from using effect handlers to implement non-

standard versions of effects that are easier to reason about. For example, our handler for concurrency

generates fewer interleavings than a standard operational semantics for concurrency. As a result,

the “invariant-opening” rule that we obtain for this handler is stronger than the standard rule from

most concurrent separation logics (CSLs). To justify the use of these non-standard semantics, we

must prove that they are equivalent in an appropriate sense to the standard semantics. To do so,

we develop a new relational logic for effect handlers called Banyan.

Contributions. To summarize, our work makes the following contributions:

• We extend Hazel [18] to develop Ficus, an extensible unary program logic based on effect

handlers (§2). Ficus uses protocols to decompose reasoning about handlers and client code

using handlers, and adds support for an extensible notion of worlds to share resources

between client code (§3).

• We develop a relational logic, Banyan, for proving contextual refinement in the presence

of effect handlers (§4). Banyan adapts Ficus protocols to the relational setting, similarly

allowing for reuse and extensibility.

• As case studies, we show how to reconstruct and extend features from existing program

logics using our effect handler approach. This includes: (1) A derivation of local prophecy
variables out of global prophecies, along with an approach to implicitly make prophecies

without annotating a program with prophecy operations; (2) A logic for crash-recovery

Building Extensible Program Logics through Effect Handlers 3

𝑣 ::= () | rec 𝑓 𝑥 . 𝑒 | · · · | cont 𝑁
𝑒 ::= 𝑣 | 𝑥 | 𝑒 𝑒 | · · · | do 𝑒 | §(𝑁) [𝑣] | (try 𝑒 with 𝑣 𝑘 ⇒ 𝑒 | ret 𝑣 ⇒ 𝑒) | pick | observe 𝑒
𝐾 ::= [] | 𝑒 𝐾 | 𝐾 𝑣 | · · · | do 𝐾 | (try 𝐾 with 𝑣 𝑘 ⇒ 𝑒 | ret 𝑣 ⇒ 𝑒)
𝑁 ::= [] | 𝑒 𝑁 | 𝑁 𝑣 | · · · | do 𝑁

Fig. 1. Syntax of values 𝑣 , expressions 𝑒 , evaluation contexts 𝐾 , and neutral evaluation contexts 𝑁 .

reasoning with asynchronous durable storage that recovers the features of Perennial [12],

but with a simpler model, and novel support for crash-aware prophecy variables; (3) A logic

for distributed systems with IronFleet-style [24] atomic blocks.

Our work is mechanized in the Iris separation logic framework [26] and the Rocq Prover. Our

formalization is available in the supplementary material.

2 Program Logics by Effect Handlers
This section provides an overview of how to build up a program logic using effect handlers. After

introducing FicusLang, we describe the core features of Ficus, and use them to develop proof rules

for reasoning about shared-memory concurrency. An inference rule with premises 𝑃1, . . . , 𝑃𝑛 and

conclusion 𝑄 should be read as a separation logic entailment of the form 𝑃1 ∗ · · · ∗ 𝑃𝑛 ⊢ 𝑄 .

2.1 The FicusLang Calculus
FicusLang is a call-by-value ML-style lambda calculus with effect handlers. The syntax of FicusLang

is shown in Figure 1. The expression do 𝑣 raises an effect with value 𝑣 , which will later be handled

by the closest enclosing effect handler. Expression try 𝑒0 with 𝑣1 𝑘 ⇒ 𝑒1 | ret 𝑣2 ⇒ 𝑒2 installs a

shallow effect handler for 𝑒0: it evaluates 𝑒0 until either 𝑒0 raises an effect or becomes a value. For the

first case, the handler will have access to the value 𝑣1 raised by the effect and a continuation 𝑘 that

allows the handler to resume 𝑒0 from the point the effect was raised. For the second case, the handler

will obtain the result of 𝑒0, a value 𝑣2. This type of handler is called a shallow handler because it

will disappear in both cases, and the interpreter must reinstall the handler if the expression 𝑒0 may

raise effects multiple times.
1
Continuations are used by applying them like functions.

In addition to effect handlers, FicusLang has two built-in primitive effects. The first is the pick
expression, which non-deterministically evaluates to an arbitrary integer. The second is observe 𝑣 ,
which performs a labeled transition with the label given by the value 𝑣 . These observe statements

are used as a form of ghost code and underlie our support for prophecy variables as discussed in §5.

Figure 2 shows an example of a handler implementing a global state effect supporting read
and write operations. The handler uses a state-passing style. The recursive function go takes a
continuation 𝑘 , a value 𝑟 to pass to the continuation, and the current global state 𝜎 . It runs the

continuation under a handler that expects raised effects to be pairs of the form (𝜂, 𝑣), where 𝜂 is a

tag indicating whether the operation is a read or write. Based on the tag, it recursively calls go
with the appropriate return value and updated state. If the tag does not match read or write, it
re-raises the effect to allow composition with another handler for other effects.

2.2 Core Ficus Logic
To reason about programs written in FicusLang, we make use of Ficus, a separation logic built on

top of the Iris framework [26], adapted from the Hazel logic for effect handlers [18]. This section

first presents the basic core of Ficus, which is essentially a subset of Hazel. Later sections will

describe additional generalizations that go beyond Hazel.

1Deep handlers, which are re-installed after an effect is raised, can be simulated with shallow handlers and recursion.

4 Zhang et al.

runstate ≜ 𝜆main init. go main () init
where go ≜ rec go 𝑘 𝑟 𝜎.

try 𝑘 𝑟 with
𝑣 𝑘 ⇒ match 𝑣 with

(read, ()) ⇒ go 𝑘 𝜎 𝜎
| (write, 𝑦) ⇒ go 𝑘 () 𝑦
| (𝜂, 𝑣) ⇒ do (𝜂, 𝑣)

| ret 𝑣⇒ 𝑣

Fig. 2. Handler for a global state effect.

Ewp-Value

Φ(𝑣)
ewp 𝑣 ⟨Ψ⟩ {Φ}

Ewp-Do

Ψ(𝑣,Φ)
ewp do 𝑣 ⟨Ψ⟩ {Φ}

Ewp-Mono

Ψ ⊑ Ψ′ ∀𝑣 . Φ(𝑣) −∗ Φ′ (𝑣) ewp 𝑒 ⟨Ψ⟩ {Φ}
ewp 𝑒 ⟨Ψ′⟩ {Φ′}

Ewp-Frame

𝑅 ewp 𝑒 ⟨Ψ⟩ {Φ}
ewp 𝑒 ⟨Ψ⟩ {𝑣 . 𝑅 ∗ Ψ(𝑣)}

Ewp-Pure

ewp 𝑒 ⟨Ψ⟩ {Φ} 𝑒′ −→∗ 𝑒

ewp 𝑒′ ⟨Ψ⟩ {Φ}

Ewp-Bind

ewp 𝑒 ⟨Ψ⟩ {𝑣 . ewp 𝑁 [𝑣] ⟨Ψ⟩ {Φ}}
ewp 𝑁 [𝑒] ⟨Ψ⟩ {Φ}

Fig. 3. Selected reasoning rules about the effect weakest precondition ewp 𝑒 ⟨Ψ⟩ {Φ}.

Ficus uses a weakest precondition assertion of the form ewp 𝑒 ⟨Ψ⟩ {Φ} for reasoning about

programs. In this assertion, 𝑒 is a program expression, Φ is a postcondition, and Ψ is a protocol that
describes the specifications for effect handlers that are active as 𝑒 executes. This assertion says that

if 𝑒 executes in an environment with handlers satisfying Ψ, then evaluating 𝑒 will not get stuck,

and if 𝑒 terminates with value 𝑣 , then the assertion Φ(𝑣) will hold. More concretely, the protocol Ψ
is a predicate of typeVal → (Val → iProp) → iProp, where the first argument is the value raised

with an effect, and the second argument is the postcondition at the time the effect was raised.

Throughout this paper, we require all protocols to be monotonic [17]. A protocol Ψ is monotonic if

(∀𝑤. Φ(𝑤) −∗ Φ′ (𝑤)) ⊢ Ψ(𝑣,Φ) −∗ Ψ(𝑣,Φ′) for all 𝑣 , Φ, and Φ′
. This essentially enforces a one-shot

continuation discipline in the logic which simplifies our presentation and suffices for our purposes.

Figure 3 lists a selection of reasoning rules for the ewp assertion. Most of these rules are similar

to standard weakest precondition rules in separation logics. The key rule for reasoning about effects

is Ewp-Do, which says that to raise value 𝑣 , it suffices to show that the protocol holds for the value

𝑣 and the current postcondition Φ.
For example, for the state handler in Figure 2, we use the STATE protocol

READ𝛾 (𝑣,Φ) ≜ ∃𝑥 . 𝑣 = (read, ()) ∗ 𝑆𝛾 (𝑥) ∗ (𝑆𝛾 (𝑥) −∗ Φ(𝑥))
WRITE𝛾 (𝑣,Φ) ≜ ∃𝑥,𝑦. 𝑣 = (write, 𝑦) ∗ 𝑆𝛾 (𝑥) ∗ (𝑆𝛾 (𝑦) −∗ Φ(()))
STATE𝛾 (𝑣,Φ) ≜ READ𝛾 (𝑣,Φ) ∨WRITE𝛾 (𝑣,Φ)

where 𝑆𝛾 (𝑥) is a predicate that uses a piece of ghost state with the name 𝛾 to assert that the current

value of the global state 𝜎 is 𝑥 . The first component of the protocol is READ, which says that when

the effect tag is read, then the client must show 𝑆𝛾 (𝑥) for some 𝑥 , in which case the protocol gives

back 𝑆𝛾 (𝑥) for proving the postcondition Φ instantiated with the value 𝑥 , indicating that the return

value of the effect will be 𝑥 . The second component is theWRITE protocol, which updates the given

𝑆𝛾 predicate from value 𝑥 to the value 𝑦 being written and returns back the unit value. Finally,

STATE is the disjunction of these two protocols.

Building Extensible Program Logics through Effect Handlers 5

By applying Ewp-Do, we obtain the following derived rules for reasoning with this protocol:

Ewp-Read

𝑆𝛾 (𝑥)
ewp do (read, ()) ⟨STATE𝛾 ⟩ {𝑣 . 𝑣 = 𝑥}

Ewp-Write

𝑆𝛾 (𝑥)
ewp do (write, 𝑦) ⟨STATE𝛾 ⟩ {𝑣 . 𝑣 = () ∗ 𝑆𝛾 (𝑦)}

Installing Handlers. So far, we have seen how a client can reason about effects when an

appropriate protocol is part of the ewp assertion. Protocols are added to the ewp when a handler is

installed using the Ewp-Try rule shown below. Using the Ficus approach, we think of the language

and logic as being extended to support new effects by adding handlers, so applying this rule forms

the core proof obligation of a developer trying to extend the program logic.

Ewp-Try

ewp 𝑒 ⟨Ψ⟩ {Φ}

(
∀𝑣2. Φ(𝑣2) −∗ ewp 𝑒2 ⟨Ψ′⟩ {Φ′}

)
∧(

∀𝑣1, 𝑘1. Ψ(𝑣1, 𝜆𝑤 . ewp 𝑘1 𝑤 ⟨Ψ⟩ {Φ}) −∗ ewp 𝑒1 ⟨Ψ′⟩ {Φ′}
)

ewp try 𝑒 with 𝑣1 𝑘1 ⇒ 𝑒1 | ret 𝑣2 ⇒ 𝑒2 ⟨Ψ′⟩ {Φ′}

Specifically, in the Ewp-Try rule, we start with a protocol Ψ′
, and end up with a protocol Ψ

when reasoning about the expression 𝑒 that runs with the new handler available. This rule has two

premises. The first premise requires proving an ewp about 𝑒 with the new protocol Ψ. As a result,
this premise will be proved by a client who may now reason as if 𝑒 has access to the new effects.

Meanwhile, the second premise makes up the proof obligation that justifies extending the logic

with this new protocol. This premise is a logical conjunction with two parts. The first conjunct

is for the case where 𝑒 evaluates to a value without raising an effect and requires showing that

𝑒’s postcondition Φ implies an ewp about the remaining expression 𝑒2. The second conjunct is for

the case where 𝑒 raises an effect. Recall that when 𝑒 raises an effect, from the client’s perspective

it must establish the protocol Ψ. Conversely, that means that here in this proof rule, we get the

protocol Ψ instantiated with the value 𝑣1 raised with the effect, and a predicate that captures a

specification for the continuation 𝑘1. From this, we must prove an ewp about the handler code 𝑒1
that will run. These two conjuncts are joined with ∧ instead of ∗ because only one of these two

outcomes will occur, so the rule does not require separate resources for each conjunct.

To apply this rule for the state handler from Figure 2, and thereby add the STATE protocol, we first
need to more carefully define the 𝑆𝛾 (𝑥) assertion. To do so, we use the underlying Iris logic’s support
for defining ghost state using resource algebras [26]. In particular, we define it as the fragment copy
of a authoritative resource algebra: 𝑆𝛾 (𝑥) ≜ ◦𝑥 𝛾

. Roughly speaking, this resource algebra comes

with two types of ghost resources: an authoritative copy •𝑥 𝛾
and a fragment copy ◦𝑥 𝛾

. When

these copies are combined together, they are guaranteed to agree, i.e., •𝑥 𝛾 ∗ ◦𝑦 𝛾 ⊢ 𝑥 = 𝑦, and

they can be updated to an arbitrary value 𝑦, with the rule •𝑥 𝛾 ∗ ◦𝑥 𝛾 ⊢ |⇛ •𝑦 𝛾 ∗ ◦𝑦 𝛾
, where |⇛

is the basic update modality. The update modality is the primitive for manipulating ghost resources

in the Iris logic. The assertion |⇛𝑃 says that we can update our ghost resources and obtain 𝑃 . The

modality can be eliminated at any suitable time during program verification.

The handler runstate allocates ghost states •init 𝛾
and ◦init 𝛾

at a fresh ghost location 𝛾 , where

init is the initial value for the state that is passed in. It keeps its authoritative copy •init 𝛾
, and

passes the fragment copy ◦init 𝛾
, which is 𝑆𝛾 (𝑖𝑛𝑖𝑡), to the client. Whenever the client raises an

effect, it must show the value satisfies STATE𝛾 , which is then passed to the handler code. The

handler proof uses the 𝑆𝛾 (𝑥) that is included in STATE𝛾 and combines it with its corresponding

authoritative copy of the ghost state to carry out the read or write. Note that the handler recursively

calls go, thereby re-installing the handler and running the continuation. To reason about this

recursion, we use Löb induction from the underlying Iris logic [26]. Altogether, we obtain the

6 Zhang et al.

runconc ≜ 𝜆main. go {|(main, (),M)|}
where go ≜ rec go pool.

let ((𝑘, 𝑟, 𝑡), pool) := choose pool in
try 𝑘 𝑟 with
𝑣 𝑘 ⇒ match 𝑣 with

(fork, 𝑒) ⇒ go ({|(𝑒, (), C), (𝑘, (), 𝑡) |} ⊎ pool)
| (𝜂, 𝑣) ⇒ go ({|(𝑘, do (𝜂, 𝑣), 𝑡) |} ⊎ pool)

| ret 𝑣⇒ if 𝑡 = M× then 𝑣
else go ({|((𝜆_. 𝑣), (), 𝑡×) |} ⊎ pool)

Fig. 4. A handler for concurrency.

following derived rules for go and run, starting from a base protocol ⊥ defined by ⊥(𝑣,Φ) ≜ False.
Ewp-StateGo

•𝜎 𝛾
ewp 𝑘 𝑟 ⟨STATE𝛾 ⟩ {Φ}

ewp go 𝑘 𝑟 𝜎 ⟨⊥⟩ {Φ}

Ewp-StateRun

∀𝛾 . 𝑆𝛾 (init) −∗ ewp main () ⟨STATE𝛾 ⟩ {Φ}
ewp runstate main init ⟨⊥⟩ {Φ}

Building a Hierarchy of Effects. The previous example showed how to go from no effects

(represented by protocol⊥) to the state effect (protocol STATE𝛾). In practice, we want to accumulate

effects by nesting additional handlers within the handler for STATE𝛾 . To that end, as in Hazel, we

define a combinator ⊕ on protocols by (Ψ1⊕Ψ2) (𝑣,Φ) ≜ Ψ1 (𝑣,Φ) ∨Ψ2 (𝑣,Φ). In other words, Ψ1⊕Ψ2

represents that a client may choose to use effects from either of Ψ1 or Ψ2, or both. For example,

STATE𝛾 = READ𝛾 ⊕ WRITE𝛾 . Applying this operation to protocols results in a “larger” protocol.

This is formally captured by a preorder relation on protocols Ψ1 ⊑ Ψ1 ⊕ Ψ2. Intuitively, Ψ1 ⊕ Ψ2

is larger than Ψ1 because the former permits the client to raise more kinds of effects. Using the

Ewp-Mono rule, we can generalize Ewp-Read and Ewp-Write accordingly: rather than requiring

exactly the protocol STATE𝛾 , we require that the protocol is some Ψ such that STATE𝛾 ⊑ Ψ.
Similarly, the Ewp-StateGo and Ewp-StateRun specifications for installing the handler do

not need to start from the base protocol ⊥. Instead, they can start from an arbitrary protocol Ψ,
and—so long as Ψ does not already handle the tags for read and write—the client code would
then operates with protocol Ψ ⊕ STATE𝛾 . This enables the state handler to be composed with an

arbitrary context of previously installed handlers, allowing a logic developer to mixin rules for state

with other effects. A protocol is said to handle a set of tags𝑇 if Ψ(𝑣,Φ) ⊢ ∃𝑡, 𝑣 . 𝑣 = (𝑡, 𝑣) ∧ 𝑡 ∈ 𝑇 for

all 𝑣 and Φ. We write tags(Ψ) for the tags handled by Ψ. For the state protocol we would require

read, write ∉ tags(Ψ). As another example of effects, we have implemented a handler for a heap

effect with dynamically allocatable higher-order references and the ability to locally read and write

from a given reference. This handler uses the STATE protocol to store a global map representing

the heap, and provides its own HEAP protocol for clients to use.

In this way, we compositionally build logical support for a collection of effects starting from the

⊥ protocol, extending the core pure logic with support for these effects. This approach is grounded

in an adequacy theorem, which shows that the logic starting with the ⊥ protocol is sound.

Theorem 2.1 (Adeqacy, Core Ficus). Let 𝜑 be a first-order predicate. If ⊢ ewp 𝑒 ⟨⊥⟩ {𝜑} is
derivable, then executing 𝑒 will not get stuck, and if 𝑒 −→∗ 𝑣 then 𝜑 (𝑣) holds.

3 Concurrency and Extensible Worlds
In the effects we have seen so far, the handler always immediately returns control back to the client

that raised the effect. However, for other kinds of effects, the handler may instead pass control to

other client code. To reason about these kinds of handlers, we need to go beyond the core features

of Ficus inherited from Hazel. This section describes a new feature in Ficus called extensible worlds.

Building Extensible Program Logics through Effect Handlers 7

A key example of an effect where this mechanism is needed is preemptive concurrency. Figure 4

shows an implementation of a concurrency handler. It depends on a bag (a.k.a. multiset) library for

the thread pool pool. Each thread in pool is represented by a triple of (continuation, result of last

effect, thread type), where the thread type can be either a main threadM, a child thread C, or their
terminated variants M×

and C×
.

To execute one thread, the scheduler non-deterministically chooses one thread from pool, let it
execute for as many pure steps as it can until it raises an effect or terminates. If the thread raises a

fork effect, the scheduler will push both the new thread (𝑒, (), C) and the old thread (𝑘, (), 𝑡) to
the thread pool. If the thread raises another effect, the scheduler will forward the effect to an outer

handler by re-raising it, collect its result, and put the old thread back to the thread pool. Finally, if

the thread terminates, the scheduler will not immediately terminate the whole system but mark the

thread as terminated and put it back into pool. The scheduler will only exit when the main thread

terminates the second time, allowing other threads to continue executing for some number of steps

before the program exits.

Because the handler may pass control to other threads when an effect is raised, we now need to

reason about coordination between threads, which is what extensible worlds will enable.

Background: Iris Invariants and Fancy Updates. To motivate extensible worlds, let us first

recall howmodern concurrent separation logics like Iris handle reasoning about interaction between

different threads. By default, CSL allows for local reasoning about different threads in a concurrent

system by dividing up state and resources into separate disjoint parts using separating conjunction,

with each thread having ownership of some portion of state. However, in some cases, threads need

to share ownership of state. To do so, CSLs make use of invariants. In Iris, an invariant assertion

𝑃
N
says that 𝑃 is an invariant that holds between all program steps. The N annotation is a name

given to this invariant. These assertions are duplicable, meaning that 𝑃
N ⊢ 𝑃

N ∗ 𝑃
N
, which

allows each thread to have a copy of the assertion. When carrying out a proof about a thread, we

access the underlying assertion 𝑃 by “opening” the invariant using the following rule:

Wp-InvAcc

𝑃
N N ⊆ E ⊲ 𝑃 −∗ wpE\N 𝑒 {𝑥 . ⊲ 𝑃 ∗ Φ(𝑥)} atomic(𝑒)

wpE 𝑒 {Φ}

This rule allows us to prove the weakest precondition under the assumption that 𝑃 holds (under

a later modality ⊲ [4, 11, 35], which we will ignore for now), so long as we re-establish 𝑃 in the

postcondition of 𝑒 . Here, 𝑒 must be atomic, meaning that it reduces to a value in a single step, so

that by re-establishing 𝑃 in the postcondition, we ensure that 𝑃 will continue to hold before and

after each step. The mask parameter E is a set that tracks invariants that have not yet been opened.

The invariants in E are said to be closed or enabled, while all other invariants are open or disabled.
In fact, in Iris, Wp-InvAcc is a derived rule. Iris uses a more primitive mechanism called a fancy

update modality of the form |⇛E1 E2

that encodes the process of opening and closing invariants.

Informally, the assertion |⇛E1 E2

𝑃 is an assertion stating that starting with all invariants in E1 being

enabled, and then opening/closing invariants so as to end up with E2 being enabled, it is possible

to prove 𝑃 . Then the Wp-InvAcc rule can be derived from the following two rules.

Fupd-InvAcc

𝑃
N N ⊆ E

|⇛E E\N ⊲ 𝑃 ∗ (⊲ 𝑃 −∗ |⇛E\N E True)

Wp-Atomic

|⇛E1 E2

wpE2

𝑒
{
𝑥 . |⇛E2 E1

Φ(𝑥)
}

atomic(𝑒)
wpE1

𝑒 {Φ}

These rules are notationally heavy, but the rule on the left captures the process of opening an

invariant with the update modality. Starting from masks in E, we end up with masks in E \ N ,

8 Zhang et al.

and get ⊲ 𝑃 . Additionally, we get that by supplying ⊲ 𝑃 we can close the invariant, as represented

by the |⇛E\N E True. Meanwhile, the rule on the right is what allows us to actually use the fancy

update modality to open invariants when reasoning about an atomic expression 𝑒 , so long as the

the postcondition also includes a modality to close those same invariants.

Under the hood, the semantic model for this |⇛E1 E2

modality uses a mechanism called world
satisfaction. Essentially, the Iris definition of |⇛E1 E2

tracks the set of all of the enabled/disabled

invariants, and requires that for each enabled invariant, there are resources ensuring the invariant

holds. This bundle of resources is called a world.

Although the Iris invariant mechanism is very expressive and flexible, it has some limitations.

As a result, some prior projects have found it necessary to modify this notion of invariants. For

example, both Perennial [12] and Nola [33] have considered alternate forms of invariant assertions,

the former to encode invariants that govern behavior when a program crashes, and the latter to

reason about termination without needing the later modality. One key issue, for our purposes, is

that the notion of atomicity and the way invariants can be used in a rule like Wp-Atomic is closely

tied to the built-in preemptive concurrency in Iris. Instead, we want to allow handler implementers

to define a notion of invariant suitable for the kind of effect they are modeling.

Extensible Worlds. To achieve this kind of extensibility, Ficus does not fix a single baked-in

world in the interpretation of the fancy update. Instead, Ficus parameterizes the ewp and fancy

update modalities by a customizable notion of world. The full version of the Ficus ewp assertion

then has the form ewp
W1,W2

𝑒 ⟨Ψ⟩ {Φ}, where W1 is an arbitrary Iris proposition representing the

world at the start of 𝑒’s execution, and W2 is the world after 𝑒 finishes. Meanwhile, the fancy update

modality becomes the world update modality |⇛
W1 W2

, stating that the update is possible starting

from the world W1 and ends up in the world W2. When the starting world W is the same as the

ending world, we simply write ewp
W
𝑒 ⟨Ψ⟩ {Φ} and |⇛

W
.

Worlds are just normal Iris assertions, but it is nevertheless helpful to think of them more

abstractly. The combination of two worlds, written W1 ⊕ W2, is defined as W1 ∗W2. We impose a

preorder ⊑ on worlds defined by W1 ⊑ W2 ≜ ∃W′ . (W2 ⊣⊢ W1 ⊕ W
′). Here, larger worlds have

more resources, and the minimal element ⊥ is the proposition True. Thus, with an update like

|⇛
W1 W2

𝑃 , when W2 ⊑ W1, we are shifting to a smaller world, and give the difference betweeen W2

and W1 to the proof of 𝑃 . Conversely, shifting to a larger world with W1 ⊑ W2 requires putting in

the difference between W1 and W2

The rules we have seen previously for the ewp are generalized to account for worlds. A selection

of the generalized rules about ewp and the world update modality are shown in Figure 5. Wupd-

Intro introduces a world update |⇛
W1 W2

𝑃 by showing that, given access to the initial world W1, we

are able to prove 𝑃 and the resulting worldW2, potentially performing ghost updates using the basic

update modality. Wupd-Elim eliminates a world update modality from an assumption, updating

the worlds on the goal accordingly. The Wupd-Frame allows for “framing out” an unnecessary

world W that occurs in both the starting and ending world.

Unlike the Iris Wp-Atomic rule, which only allows masks to change around an atomic step, the

Ewp-WupdPre rule allows us to apply a world update that changes the starting world for any

expression, and Ewp-WupdPost changes the corresponding ending world. The is allowed because,

unlike standard Iris, where the scheduler could preempt a thread at any point, in the effect handler

approach, control can only be transferred when an effect is raised. This means the starting world

does not need to be immediately restored. Instead, only when an effect is raised, must the world

be in an appropriate configuration, depending on whether the protocol Ψ requires it or not. In

Ewp-DoWupd, we start by shifting to the bottom world ⊥, and then in the continuation passed to

Building Extensible Program Logics through Effect Handlers 9

Wupd-Intro

W1 −∗ |⇛ (𝑃 ∗W2)
|⇛

W1 W2

𝑃

Wupd-Elim

𝑄 ⊢ |⇛
W2 W3

𝑃

(|⇛
W1 W2

𝑄) ⊢ |⇛
W1 W3

𝑃

Wupd-Frame

|⇛
W1 W2

𝑄

|⇛
W1⊕W W2⊕W𝑄

Ewp-ValueWupd

|⇛
W1 W2

Φ(𝑣)
ewp

W1,W2

𝑣 ⟨Ψ⟩ {Φ}

Ewp-WupdPre

|⇛
W1 W2

ewp
W2,W3

𝑒 ⟨Ψ⟩ {Φ}
ewp

W1,W3

𝑒 ⟨Ψ⟩ {Φ}

Ewp-WupdPost

ewp
W1,W2

𝑒 ⟨Ψ⟩ {𝑣 . |⇛
W2 W3

Φ(𝑣)}
ewp

W1,W3

𝑒 ⟨Ψ⟩ {Φ}

Ewp-DoWupd

|⇛
W1 ⊥Ψ(𝑣, (𝜆𝑟 . |⇛⊥ W2

Φ(𝑟)))
ewp

W1,W2

do 𝑣 ⟨Ψ⟩ {Φ}

Ewp-WorldFrame

ewp
W1,W2

𝑒 ⟨Ψ⟩ {Φ}
ewp

W1⊕W,W2⊕W 𝑒 ⟨Ψ⟩ {Φ}

Fig. 5. Selected reasoning rules for |⇛
W1 W2

and ewp with worlds.

the protocol Ψ, we must restore back to W2. Finally, we can frame out an unused world in ewp
with Ewp-WorldFrame.

Recovering Iris Invariants. It is straightforward to recover Iris-style impredicative invariants

and the Iris fancy update modality in this more general world setting. As was described above,

the standard Iris definition fixes some particular world in its definition of fancy updates, and uses

ghost state to track the enabled invariants. Let us write TokI (E) for the assertion that bundles the

world with the ghost state saying that mask E is enabled. Then we recover the following analogue

of the Fupd-InvAcc rule that we saw earlier.

Wupd-InvAcc

𝑃
N N ⊆ E

|⇛TokI (E) TokI (E\N) ⊲ 𝑃 ∗ (⊲ 𝑃 −∗ |⇛TokI (E\N) TokI (E) True)
Moreover, by combining this rule with Ewp-WorldFrame, we can support Iris invariants while

including other possible components in the world. As we will see in §6.1, this allows us to encode a

mechanism similar to Perennial’s crash borrows [48] while retaining standard Iris invariants.

Protocol for the Concurrency Handler. Now that we have an extensible mechanism for encod-

ing invariants that hold across threads, we turn to the protocol for the concurrency handler.

One challenge is that the concurrency handler in Figure 4 is generic, in the sense that it does not

know about the other effects that might be supported by outer handlers. It simply re-raises those

effects to the outer handler and potentially transfers control to another thread when the effect

returns. This means that the outer handlers could, say, implement shared memory or channel-based

message passing concurrency, or some combination thereof. Ideally, the protocol we develop should

similarly work for different kinds of outer effects.

To achieve this, the first ingredient is a protocol transformer ATOMW
that lifts a protocol for

these outer effects into a concurrent protocol, where W is a world that describes shared resources

that can be accessed by different threads. To do this lifting, ATOM transforms Ψ to ensure that as

part of raising an effect governed by Ψ, the thread must be able to restore the world W. In addition,

when the handler returns control back to a thread, it promises that W will hold. Formally, this is

captured through the following definition

ATOMW (Ψ) (𝑣,Φ) ≜ Ψ(𝑣, 𝜆𝑟 . |⇛⊥ W
|⇛

W ⊥Φ(𝑟))
The first |⇛⊥ W

is an obligation that the thread raising the effect has to be able establish W after

the effect completes. Meanwhile, because the second |⇛
W ⊥ precedes the continuation Φ(𝑟), it

effectively gives back access to W before the continuation’s Φ must be proved. In particular, if we

10 Zhang et al.

instantiate W to be TokI (⊤), where ⊤ is the full mask saying that all invariants are enabled, then

the above requires a thread to close all Iris invariants after the operation completes, just as in the

Iris rule Wp-Atomic.

To get the final protocol CONC for the concurrency handler, we combine ATOM with a protocol

FORK governing the fork effect. Because the forked thread will run in the scope of the concurrency

handler, FORK must have a recursive dependence on CONC.

CONCW (Ψ) ≜ ATOMW (Ψ ⊕ FORKW (Ψ))
FORKW (Ψ) (𝑣,Φ) ≜ ∃𝑒. 𝑣 = (fork, 𝜆_. 𝑒) ∗ ⊲ ewp

W
𝑒 ⟨CONCW (Ψ)⟩ {_. True} ∗ Φ(())

Here, the recursive occurrence of CONC in FORK occurs under the later modality ⊲, so that we

can define the result as a guarded fixed point [15, 21, 26]. The protocol for FORK requires showing

an appropriate ewp for the forked thread. Let us introduce a wrapper fork 𝑒 ≜ do (fork, 𝜆_. 𝑒).
We can re-derive the standard fork rule from Iris with this protocol.

Ewp-Fork

ewp
W
𝑒 ⟨CONCW (Ψ)⟩ {_. True}

ewp
W
fork 𝑒 ⟨CONCW (Ψ)⟩ {𝑣 . 𝑣 = ()}

Finally, we have the specification for runconc from Figure 4, which installs the concurrency handler.

Ewp-ConcRun

fork ∉ tags(Ψ) ewp
W
main () ⟨CONCW (Ψ)⟩ {Φ}

ewp
W
runconc main ⟨Ψ⟩ {Φ}

In addition to the ability to create threads with fork, we can also model primitive atomic

instructions such as compare-and-swap (CAS) or fetch-and-add (FAA). To do so, we just need to

define an additional handler on top of the heap handler and associated protocol ATOMHEAP that

models these effects, much like the earlier HEAP protocol did. Combining HEAP and ATOMHEAP
together, and applying the concurrency handlerwe obtain a protocol thatmodels all of the operations

one finds in the “standard” concurrent HeapLang distributed with Iris. Along the way, we have

obtained a stronger version of the invariant opening rule, allowing us to keep invariants open for

multiple pure steps.

However, a careful reader might object that what allowed us to derive this stronger invariant

opening rule is the fact that the concurrency handler only transfers control to another thread

when an effect is raised. In contrast, a standard operational semantics for preemptive concurrency

typically allows for preemption at every step, thereby generating more possible interleavings of

thread operations. Because our handler semantics for concurrency is not generating all of the

interleavings that the standard semantics would, one might wonder whether this handler is really

sound. Informally, the reason why the handler is sound in spite of this is that the intermediate pure

steps in-between effects are not observable to other threads to the system, thus inserting additional

preemption points would not change the possible outcomes of execution. In the next section, we

introduce a relational logic that will allow us to prove this claim rigorously.

4 Contextual Equivalence of Effectful Programs
In this section, we develop Banyan, a relational logic that allows us to prove correspondences

between the behavior of two effectful programs written in FicusLang. Just as with unary reasoning,

we compositionally derive relational reasoning rules for a number of effects. Using the resulting

logic, we define logical relations models that can prove contextual equivalences of programs

written in typed subsets of FicusLang. We apply this logical-relations model to prove that inserting

additional preemption points in our concurrency handler does not change the set of possible

Building Extensible Program Logics through Effect Handlers 11

program behaviors, thus justifying the semantics from the previous section where preemption only

occurs when effects are raised.

4.1 Background: Embedding Relational Logics into Unary Logics
Banyan embeds relational reasoning into Ficus by encoding a second program as ghost state, as in
CaReSL [50]. Let us first recall how this ghost state encoding works in modern Iris-based separation

logics. For sequential programs, one first introduces two assertions: spec(𝑒), which says that the

second program (which we call the “spec” program) is currently represented by the expression 𝑒;

and specCtx, which is an invariant that ensures that the spec(𝑒) ghost state can only be updated

in ways that represent valid transitions in the language’s operational semantics. We further add

in assertions to represent the state of this spec program. For example a spec program points-to

assertion 𝑙 ↦→𝑠 𝑣 says that in the spec program, location 𝑙 contains the value 𝑣 , analogous to

the standard points-to assertion. Using these assertions, one derives rules that allow for the spec

program to be “executed” by applying ghost updates. To prove a relational property about two

programs 𝑒1 and 𝑒2, it then suffices to derive a judgement of the form:

specCtx ∗ spec(𝑒1) ⊢ wp 𝑒2 {𝑣2 . ∃𝑣1 . spec(𝑣1) ∗ 𝜑 (𝑣1, 𝑣2)}
The soundness theorem of the encoding says that such a derivation implies that, for every execution

of 𝑒2 terminating in a value 𝑣2, there exists a terminating execution of 𝑒1 ending in some value 𝑣1
such that 𝜑 (𝑣1, 𝑣2) holds. This basic approach can be generalized to account for concurrency as

well by having multiple spec program resources, one for each thread in the concurrent program.

Banyan adapts this style of relational reasoning with ghost programs to the setting of effect

handlers. A key challenge is that the usual ghost state encoding requires fixing the primitive effects

of the language ahead of time, and requires special treatment in the concurrent case to introduce

per-thread spec programs. In contrast, in Banyan these notions are derivable using protocols and

worlds, just as with unary reasoning.

4.2 Banyan: A Relational Logic for FicusLang
To enable extensibility, Banyan reasons about spec programs using an effect specification resource
assertion espec

W
𝑒 ⟨Ψ⟩ that tracks a spec program 𝑒 and a protocol Ψ in a world W. The program 𝑒

can be updated and progressed according to the operational semantics of FicusLang. For example,

espec
W

((𝜆𝑥. 𝑒) 𝑣) ⟨Ψ⟩ can be updated to espec
W
𝑒 [𝑣/𝑥] ⟨Ψ⟩ to reflect the execution of a beta

reduction as justified by Espec-Pure shown below. As in Ficus, the protocol Ψ describes the

effect handlers that are active as 𝑒 executes. That is, espec
W
𝑁 [do 𝑣] ⟨Ψ⟩ can be updated to

espec
W
𝑁 [𝑤] ⟨Ψ⟩ such that Φ(𝑤) for some𝑤 by establishing Ψ(𝑣,Φ) as enabled by Espec-Do.

espec
W
𝐾 [𝑒] ⟨Ψ⟩ ∗ 𝑒 −→∗ 𝑒′ ⊢ |⇛

W
espec

W
𝐾 [𝑒′] ⟨Ψ⟩ Espec-Pure

espec
W
𝑁 [do 𝑣] ⟨Ψ⟩ ∗ Ψ(𝑣,Φ) ⊢ |⇛

W
∃𝑤. espec

W
𝑁 [𝑤] ⟨Ψ⟩ ∗ Φ(𝑤) Espec-Do

Using these rules, we obtain derived rules for raising specific effects like global state, much as in

the unary case in §2, e.g.,

espec
W

(read, ()) ⟨Ψ ⊕ STATE𝛾 ⟩ ∗ 𝑆𝛾 (𝑣) ⊢ |⇛
W
espec

W
𝑣 ⟨Ψ ⊕ STATE𝛾 ⟩ ∗ 𝑆𝛾 (𝑣)

espec
W

(write,𝑤) ⟨Ψ ⊕ STATE𝛾 ⟩ ∗ 𝑆𝛾 (𝑣) ⊢ |⇛
W
espec

W
() ⟨Ψ ⊕ STATE𝛾 ⟩ ∗ 𝑆𝛾 (𝑤)

Similarly, we have rules for installing handlers that capture these effects, such as

espec
W
runstate main init ⟨Ψ⟩ ⊢ |⇛

W
∃𝛾 . 𝑆𝛾 (init) ∗ espec

W
main () ⟨Ψ ⊕ STATE𝛾 ⟩.

The following adequacy theorem for Banyan holds, which requires that both the spec protocol

and the ewp protocol are ⊥.

12 Zhang et al.

Theorem 4.1 (Adeqacy, Banyan). Let 𝜑 be a first-order relation. If

espec⊥ 𝑒2 ⟨⊥⟩ ⊢ ewp⊥ 𝑒1 ⟨⊥⟩
{
𝑣1 . ∃𝑣2 . espec⊥ 𝑣2 ⟨⊥⟩ ∗ 𝜑 (𝑣1, 𝑣2)

}
and 𝑒1 −→∗ 𝑣1 then there exists a value 𝑣2 such that 𝑒2 −→∗ 𝑣2 and 𝜑 (𝑣1, 𝑣2).

The key to proving this adequacy theorem lies in coming up with a suitable definition of the

espec
W
𝑒 ⟨Ψ⟩ resource that validates the above rules.

Constructing the Effect Specification Resource. Much like the ewp assertion in Ficus, the

specification resource espec
W
𝑒 ⟨Ψ⟩ tracks the behavior of the program 𝑒 under the assumption that

it executes in a program context satisfying the protocol Ψ and a logical world W. To define espec,
we first define a more general construction genspec which we will specialize to obtain espec. The
genspec assertion takes some abstract notion of a spec program and transforms it into a version

that has protocols and worlds for reasoning about effects. Specifically, let spec : Expr → iProp be
a predicate with the property that spec(𝑒) ⊢ |⇛

W
spec(𝑒′) when 𝑒 −→∗ 𝑒′. Given a choice of spec

predicate, the genspec assertion is defined as

genspec
W
𝑒 ⟨Ψ⟩ ≜ ∃𝐾. spec(𝐾 [𝑒]) ∗ handlerW (Ψ) (𝐾)

where the assertion handlerW (Ψ) (𝐾) captures that 𝐾 is an evaluation context that realizes the

protocol Ψ indefinitely from the perspective of a program 𝑒 running inside that context. Formally,

this is expressed using a greatest fixpoint:

handlerW (Ψ) ≜ gfp 𝐹, 𝐾.

∀𝑣 . spec(𝐾 [𝑣]) −∗ |⇛
W
spec(𝑣)

∧ ∀𝑣, 𝑁 ,Φ. spec(𝐾 [§(𝑁) [𝑣]]) ∗ Ψ(𝑣,Φ) −∗ |⇛
W
∃𝐾 ′,𝑤 . spec(𝐾 ′ [𝑁 [𝑤]]) ∗ Φ(𝑤) ∗ 𝐹 (𝐾 ′)

The two conjuncts of this definition require that

(1) if 𝑒 is a value 𝑣 then the context terminates with value 𝑣 , and

(2) if 𝑒 is a raised effect with continuation 𝑁 and value 𝑣 , i.e., 𝑒 = §(𝑁) [𝑣], and Ψ(𝑣,Φ)
holds, then 𝑁 is reinstated with some value 𝑤 in a context 𝐾 ′

such that Φ(𝑤) and

handlerW (Ψ′) (𝐾 ′) holds co-recursively.
We can derive generic versions of the Espec-Pure and Espec-Do rules for genspec, as well as
examples like the STATE protocol. Then we obtain espec and specialized versions of these rules

by instantiating genspec with spec(𝑒) ≜ 𝑒0 −→∗ 𝑒 , where 𝑒0 is the initial expression that the ghost

program starts as. Later, we will see how instantiating the definition with other choices of the base

specification resource allow us to reason about thread-local effects in concurrent execution.

4.3 Concurrency
To reason relationally about effects that do not immediately transfer control back to the raising

thread, we need to make use of extensible worlds, just as we did with the unary logic for concurrency.

However, in the relational case, our specification of concurrency has an additional requirement:

We want to be able to reason about each thread in the concurrent system individually. In the

encoding of specification programs in CaReSL described above in §4.1, this is achieved by having a

specification assertion per thread. Since each thread can raise effects and use other components of

a protocol, we need these per-thread resources to have access to the protocol, just as in espec.
To construct this per-thread effect specification resource, we again use the genspec construction.

To do so, we first need an underlying per-thread local specification resource spec𝛾𝑡 (𝑒) that we will
use to instantiate the construction with. Here, the 𝛾 parameter is a ghost name and 𝑡 tracks whether

Building Extensible Program Logics through Effect Handlers 13

the thread is either a main threadM or a child thread C. Additionally, we also need as specification
context world CTX

𝛾 (W,Ψ) that tracks the state of the concurrency handler.

spec𝛾𝑡 (𝑒) ≜ ∃𝑘, 𝑟 . ◦{(𝑘, 𝑟, 𝑡)} 𝛾 ∗ (∀𝐾. spec(𝐾 [𝑘 𝑟]) −∗ |⇛⊥ spec(𝐾 [𝑒]))
CTX

𝛾 (W,Ψ) ≜ ∃𝐵, pool. isBag(𝐵, pool) ∗ •𝐵 𝛾 ∗ espec
W
goconc pool ⟨Ψ⟩

In these definitions, we assert that there is some instance of the concurrency handler from Figure 4

installed, andwe use ghost state to track the thread pool in the handler. Specifically, the thread pool is

tracked using ghost resources such that •𝐵 𝛾∗ ◦𝐵′ 𝛾 ⊢ 𝐵′ ⊆ 𝐵 and •𝐵 𝛾 ⊢ |⇛
W

•(𝐵 ⊎ 𝐵′) 𝛾∗ ◦𝐵′ 𝛾
.

In the definition of spec𝛾𝑡 (𝑒) we use this ghost state to assert that a triple of the form (𝑘, 𝑟, 𝑡) is
stored in the pool, where 𝑘 is the continuation representing the thread and 𝑟 is the result of the last

effect. Additionally, we require that there is some way to run 𝑘 𝑟 so that it will reach the expression

𝑒 . In other words, the thread currently in the pool may not yet be 𝑒 , but when it is next scheduled

to run, it can execute to 𝑒 . The CTX𝛾 (W,Ψ) assertion enforces that in fact there is an underlying

espec running the concurrency handler providing the protocol Ψ.
This thread-local specification resource fulfills the requirements needed to instantiate genspec, i.e.,

when 𝑒 −→∗ 𝑒′ then spec𝛾𝑡 (𝑒) ⊢ |⇛
W
spec𝛾𝑡 (𝑒′). When updating spec𝛾𝑡 (𝑒) to spec𝛾𝑡 (𝑒′) in this deriva-

tion, instead of directly updating the underlying base effect specification resource in CTX
𝛾 (W,Ψ),

we instead accumulate the evidence that there exists a thread in the pool that can be evaluated to

the expression 𝑒′ when it is next scheduled.

Let espec𝛾 ;𝑡
W
𝑒 ⟨Ψ⟩ be notation for the result of instantiating genspec with this assertion. This

thread-local effect specification resource gives us a unified mechanism to reason about both global

and thread-local effects. It supports analogues of the Espec-Pure and Espec-Do rules. In addition,

we derive a rule for forking threads,

Spec-Fork

espec𝛾 ;𝑡
W
𝑁 [fork 𝑒] ⟨CONC𝛾

𝑠 (Ψ)⟩ CTX
𝛾 (W′,Ψ′) ⊑ W

|⇛
W
espec𝛾 ;𝑡

W
𝑁 [()] ⟨CONC𝛾

𝑠 (Ψ)⟩ ∗ espec
𝛾 ;C
CTX

𝛾 (W′,Ψ′) 𝑒 ⟨CONC
𝛾
𝑠 (Ψ′)⟩

where CONC𝛾
𝑠 (Ψ) ≜ FORK𝛾

𝑠 ⊕ Ψ and FORK𝛾
𝑠 (𝑣,Φ) ≜ ∃𝑒. 𝑣 = (fork, 𝜆_. 𝑒) ∗ (spec𝛾C (𝑒) −∗ Φ()).

Note that Spec-Fork assumes that the specification context is in the current world. The specification

context is allocated when the concurrency handler is installed using the following rule.

Spec-Conc-Run

espec
W
runconc main ⟨Ψ⟩ fork ∉ tags(Ψ)

|⇛
W
∃𝛾 . CTX𝛾 (W,Ψ) ∗ espec𝛾 ;M

CTX
𝛾 (W,Ψ) main () ⟨CONC𝛾

𝑠 (Ψ)⟩

4.4 Logical Relation for Contextual Equivalence
Using Banyan, we next define a binary program-logic based logical relation [22] for proving con-

textual equivalence of programs written in typed subsets of FicusLang. Intuitively, an expression

𝑒1 is contextually equivalent to another expression 𝑒2 at a type 𝜏 , written 𝑒1 ≃ctx 𝑒2 : 𝜏 , if no well-

typed contexts 𝐶 can distinguish them. In other words, the behavior of a client program remains

unchanged if we replace any occurrence of the sub-program 𝑒1 with 𝑒2. Contextual equivalence is

defined as the symmetric interior of contextual refinement, denoted by 𝑒1 ≲ctx 𝑒2 : 𝜏 . Intuitively

refinement means that, for any context 𝐶 the observable behavior of 𝐶 [𝑒1] is included in the

observable behavior of 𝐶 [𝑒2], relative to a closing handler context 𝐻 . Formally, we define

𝑒1 ≲𝐻
ctx 𝑒2 : 𝜏 ≜ ∀𝑏 ∈ Bool,𝐶 : 𝜏 → bool. 𝐻 [𝐶 [𝑒1]] −→∗ 𝑏 ⇒ 𝐻 [𝐶 [𝑒2]] −→∗ 𝑏.

As a consequence, both the context and the programs may interact through effects.

14 Zhang et al.

As an example, we consider a standard System-F-style type system Θ | Γ ⊢ 𝑒 : 𝜏 with impredica-

tive polymorphism, recursive types, and typing rules for CAS, FAA, and the fork operation (see,

e.g., Timany et al. [49] for a complete definition).

The logical relation is entirely standard and follows previous Iris-based models ([49]), except that
we define the expression interpretation using Banyan instantiated with the atomic heap instructions

and concurrency. The expression interpretation is

⟦𝜏⟧(𝑒1, 𝑒2) ≜ ∀𝑁, 𝑡 . espec𝛾 ;𝑡
W𝑠

𝑁 [𝑒2] ⟨Ψ2⟩ −∗
ewp

W
𝑒1 ⟨Ψ1⟩ {𝑣1. ∃𝑣2. espec𝛾 ;𝑡

W𝑠
𝑁 [𝑣2] ⟨Ψ2⟩ ∗ ⟦𝜏⟧(𝑣1, 𝑣2)}

where Ψ2 ≜ CONC𝛾
𝑠 (Ψ′), Ψ1 ≜ CONCW (Ψ), W𝑠 = CTX

𝛾 (⊥,Ψ2), W = W𝑠 ⊕ TokI (⊤) for Ψ and Ψ′

that describe the global stack of effects (state, heap, and atomic heap). The proof of the fundamental

theorem of logical relations is immediate from the existing proofs since all our rules for reasoning

about the atomic heap operations and concurrency are identical to the usual separation logic rules.

Theorem 4.2 (Fundamental). If Θ | Γ ⊢ 𝑒 : 𝜏 then Θ | Γ ⊨ 𝑒 ≲ 𝑒 : 𝜏 .

To prove soundness, we consider the closing handler context

𝐻CONC = runstate (𝜆_. runheap (𝜆_. runatomheap (𝜆_. runconc [])))
and use the handler rules, e.g., Ewp-ConcRun and Spec-Conc-Run, and Theorem 4.1.

Theorem 4.3 (Soundness). If · | · ⊨ 𝑒1 ≲ 𝑒2 : 𝜏 then 𝑒2 ≲
𝐻CONC
ctx 𝑒2 : 𝜏 .

Contextual Equivalence of Preemption. Using our logical relation, we prove that inserting
additional preemption points in concurrent programs does not change program behaviors. This

justifies the soundness of using a scheduler that only triggers preemption when effects are raised,

since it shows that additional preemption would not affect observable behavior. Formally, we

introduce an expression yield that triggers a preemption point by defining yield ≜ fork (), i.e.,
a program that simply forks a thread that terminates immediately. By forking a thread, yield
transfers control to the scheduler, which may choose another thread to continue.

To justify that yield has no effect on the computation, we show that it is contextually equivalent

to the unit value, i.e., yield ≃𝐻CONC
ctx () : unit. The proof is an immediate consequence of the rules

Ewp-Fork and Spec-Fork for the left-to-right and right-to-left refinements, respectively. As a

corollary, for example, it then follows that 𝑒1; yield; 𝑒2 ≃𝐻CONC
ctx 𝑒1; 𝑒2 : 𝜏 for any well-typed 𝑒1 and

𝑒2. As we will see in §7, a similar technique can be used to justify stronger atomicity reasoning

rules in the context of distributed execution.

5 Case Study: Prophecy Variables
When verifying certain concurrent programs in a forward-reasoning style, at some points in the

proof it is necessary to know how later operations will be non-deterministically ordered. Prophecy

variables [1, 27] are a logical mechanism that allows for “speculating” or “predicting” these future

outcomes during a proof. In Iris, these prophecy variables are ghost code, and a prover must

instrument a program to attach prophecy variables to operations whose values need to be predicted.

New prophecy variables are allocated using a command newproph, and then attached to a program

value using resolve. The proof rules for prophecy variables tell us at the time of allocation what

the future resolved value will be. Iris comes with an additional proof showing that these prophecy

variable operations can be erased from the program without affecting the outcome.

In this section, we show how to extend Ficus with prophecy variables. Our starting point is

a single global prophecy variable. On top of this global prophecy variable, we implement effect

handlers that allow for dynamically allocatable local prophecy variables, with an interface similar

Building Extensible Program Logics through Effect Handlers 15

to that of Iris. Finally, we observe that by instrumenting the handlers for heap operations with

prophecy variables, we can automatically extend all heap operations to have prophecies, without

requiring the client program to be directly instrumented with prophecies.

Global Prophecy. Recall that FicusLang has a ghost expression observe 𝑣 , which records the

value 𝑣 on a global trace. The entire future value of this trace is predicted in a global prophecy

assertion primProph (®𝑣), which is used when performing an observe.

Ewp-Obs

primProph (®𝑣)
ewp

W
observe𝑤 ⟨Ψ⟩ {_. ∃®𝑣 ′ . ®𝑣 = 𝑤 :: ®𝑣 ′ ∗ primProph (®𝑣 ′)}

By making an observation of𝑤 , we immediately learn that the first element of ®𝑣 is indeed𝑤 , so ®𝑣
must equal𝑤 :: ®𝑣 ′ for some unknown ®𝑣 ′.2 The adequacy theorem of Ficus is extended to provide

this prophecy assertion.

Theorem 5.1 (Adeqacy, Ficus). Let 𝜑 be a first-order predicate. If primProph (®𝑣) ⊢
ewp 𝑒 ⟨⊥⟩ {𝜑} is derivable for all ®𝑣 , then executing 𝑒 will not get stuck, and if 𝑒 −→∗ 𝑣 then 𝜑 (𝑣)
holds.

However, because this prophecy variable is global, it is awkward to use when trying to do local

reasoning about data structures that need prophecies.

Encoding Local Prophecy Variables. We recover Iris-style local prophecy variables by using

handlers on top of the global observe. Formally, our local prophecy variables are specified by the

following protocols

NEWPROPH(𝑢,Φ) ≜ 𝑢 = (newproph, ()) ∗ (∀𝑝, ®𝑣 . proph (𝑝, ®𝑣) −∗ Φ(𝑝))
RESOLVE_PROPH(𝑢,Φ) ≜ ∃𝑣, 𝑝,𝑤, ®𝑣 . 𝑢 = (resolve_proph, (𝑣, 𝑝,𝑤)) ∗ proph (𝑝, ®𝑣) ∗

(∀®𝑣 ′ . ®𝑣 = (𝑣,𝑤) :: ®𝑣 ′ ∗ proph (𝑝, ®𝑣 ′) −∗ Φ(𝑣))

A new prophecy variable is created by raising the effect newproph, which returns back a fresh

prophecy variable 𝑝 . Assertion proph (𝑝, ®𝑣) is the local version of primProph (®𝑣), which says that

the trace of resolutions that will occur on prophecy variable 𝑝 is ®𝑣 . The effect resolve_proph
resolves 𝑝 to a pair of values (𝑣,𝑤). The first component 𝑣 is the primary value that we want to

observe, while the second value is used for “tagging” meta-data to certain kinds of prophecies.

Under the hood, these assertions work by slicing the observation trace of the global prophecy

into traces of individual prophecy variables. This is done by making every call to

𝑔ℎ𝑜𝑠𝑡𝑐𝑜𝑑𝑒𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑜𝑏𝑠𝑒𝑟𝑣𝑒 have the format (𝑝, (𝑣,𝑤)) where 𝑝 is the identifier of the prophecy

variable that the corresponding observation is for. Then we can (tentatively) define proph (𝑝, ®𝑣) ?

=

∃®𝑣0. primProph (®𝑣0) ∗ ®𝑣 = filter(𝑝, ®𝑣0), where filter is the least fixed-point of

filter(𝑝, (𝑝′, (𝑣,𝑤)) :: ®𝑣) ≜ if 𝑝 = 𝑝′ then (𝑣,𝑤) :: filter(𝑝, ®𝑣) else filter(𝑝, ®𝑣)
filter(𝑝, _) ≜ 𝜀

The filter projects out the observations that are associated with the indicated prophecy variable,

and it returns 𝜀 as a default value, if the observations in the trace do not match the expected format.

Recall that resources in CSL are exclusive to one thread, so to actually have mutually independent

prophecy variables, we need to decompose ownership of the global prophecy primProph (®𝑣) into

2
As usual with prophecy reasoning, if the predicted value at the head of the sequence ®𝑣 was not 𝑤, then we derive a

contradiction from this rule, and no longer have to reason about this moot execution with a misprediction.

16 Zhang et al.

ownership of individual prophecy variables using an authoritative ghost resource algebra.

proph (𝑝, ®𝑣) ≜ ◦{𝑝 ↦→ ®𝑣} 𝛾𝑝

𝐼𝑝 ≜ ∃®𝑣0, 𝑀𝑝 . primProph (®𝑣0) ∗ •𝑀𝑝
𝛾𝑝 ∗ ∗𝑝 ↦→®𝑣∈𝑀𝑝

®𝑣 = filter(𝑝, ®𝑣0)

Here 𝛾𝑝 is an arbitrary but fixed global variable. Invariant 𝐼𝑝 connects individual prophecy variables

to the global prophecy and is maintained by the handler. The underlying resource algebra guarantees

that ◦{𝑝 ↦→ ®𝑣} is always an element in the map𝑀𝑝 .

The handler runproph provides protocols NEWPROPH and RESOLVE_PROPH. The handler

maintains 𝐼𝑝 . To create new prophecy variables, it internally maintains a monotonically increasing

counter for the next fresh prophecy ID so that it can always “slice out” an unused resolving sequence

from the global prophecy for a new prophecy variable. To resolve prophecy variable 𝑝 to (𝑣,𝑤), it
makes an observation of (𝑝, (𝑣,𝑤)) and updates the ghost resources accordingly. In practice, the

handler runproph is installed first so that other handlers can use prophecy variables.

Atomic Prophecies. The resolve effect we have seen so far resolves a value that is returned by

evaluating some expression. In other words, the prophecy is resolved after the expression finishes.

However, in some scenarios, it is necessary to atomically execute the expression and prophecy

resolution at the same time, particularly for atomic heap operations like CAS and FAA. Iris provides

support for this so-called atomic prophecy resolution, and we can also implement this on top of

the local prophecy variables through another effect handler with the following protocol:

RESOLVE(Ψ) (𝑣,Φ) ≜ ∃𝑒, 𝑝,𝑤, ®𝑣 . 𝑣 = (resolve, (𝑒, 𝑝,𝑤)) ∗ proph (𝑝, ®𝑣) ∗
Ψ(𝑒, (𝜆𝑟 . ∀®𝑣 ′ . ®𝑣 = (𝑟,𝑤) :: ®𝑣 ′ −∗ proph (𝑝, ®𝑣 ′) −∗ Φ(𝑟)))

The handler runatomproph provides this protocol. To handle do (resolve, (𝑒, 𝑝,𝑤)), it executes
do (resolve_proph, (do 𝑒, 𝑝,𝑤). By installing this handler after the runproph and the handlers

for heap operations, but before the handler runconc for concurrency, we ensure that do 𝑒 and

do (resolve_proph, . . .) behave as if they executed together atomically, because the additional

raise in runatomproph does not trigger an additional preemption.

Implicit Prophecies. As in Iris, the above interface for prophecies still requires a proof developer

to annotate a program with calls to create new prophecies and to resolve them at relevant points.

However, we can use effect handlers to make it so that every heap location has an associated

prophecy variable that predicts the full trace of operations that will be performed on that heap

location. This “prophetic heap” handler interposes on all of heap related effect tags, and adds an

extra resolve operation before re-raising the effect. With this protocol, when a location is allocated,

in addition to the standard points-to assertion 𝑙 ↦→ 𝑣 , we also get a proph (𝑙, ®𝑣) assertion. When

a heap operation on 𝑙 occurs, we also pass this proph (𝑙, ®𝑣) assertion, allowing us to deduce that

the value read/written to the location matches the head value in the trace ®𝑣 . This allows for proofs
with prophecies without having to annotate a client program with explicit prophecy operations.

Appendix B describes the protocols in further detail.

6 Case Study: Crash-Recovery Reasoning
Many software systems that store data on durable media such as disks must be crash safe, meaning

that the system must be able to recover from a crash caused by externally generated events such

as power failures. When a crash occurs, any data that the system has in volatile memory, such as

RAM, will be wiped, but data in durable storage will be preserved. After the system restarts, it will

typically re-run a recovery procedure that restores system invariants. A number of program logics

and verification frameworks have been developed for reasoning about such systems [12, 14, 36, 41].

Building Extensible Program Logics through Effect Handlers 17

runcrash_trigger ≜ 𝜆main.
try main () with

𝑣 𝑘 ⇒ let 𝑟 := do 𝑣 in
if nondet_bool () then do (crash, ())
else 𝑘 𝑟

| ret 𝑣 ⇒ 𝑣

runcrash ≜ rec run main.
try main () with

𝑣 𝑘 ⇒ match 𝑣 with
(crash, ()) ⇒ observe (); run main
| (𝜂, 𝑣) ⇒ do (𝜂, 𝑣)

| ret 𝑣 ⇒ 𝑣

Fig. 6. A model of crash and recovery execution.

In this section, we show how to model crashes and recovery with effect handlers, and apply Ficus

to derive protocols for reasoning about these systems in the style of Perennial [12], a separation

logic for reasoning about the combination of concurrency and crash safety.

The process of crashing and recovering is modeled by the pair of handlers in Figure 6. The

handler runcrash_trigger is installed at the inner-most level of a stack of effects for each thread,

allowing it to interpose on every do.3 It handles these effects by non-deterministically choosing to

either trigger a crash by raising crash, or by simply re-raising the effect and returning the result

to the continuation. The second handler, runcrash responds to this trigger by throwing away the

captured continuation 𝑘 and re-starting the system by running main. Note that this handler does
not directly deal with wiping the volatile state of the system. Instead, this is handled implicitly: by

installing handlers for volatile state (such as the heap handler) after this crash handler (i.e., as part
of main), this volatile state will be effectively thrown away as a result of re-running main from

scratch. In contrast, durable state can be preserved by installing these handlers before installing the
crash handler at an outer level.

6.1 Managing the Crash Invariant
In order to establish that a system is crash safe, it is essential to show that when the system restarts,

themain procedure finds itself in a state that satisfies its precondition. Perennial maintains a global

crash invariant R that must hold before and after each step of execution, and which describes the

durable state that the system needs upon restart.

Local Crash Conditions. Reasoning about a global crash invariant would run counter to the

principle of local reasoning in concurrent separation logic. To recover per-thread reasoning about

the crash invariant, Perennial extends the weakest precondition of each thread with an assertion

called a crash condition. The crash condition enforces the portion of the global crash invariant

that a given thread owns. In Ficus, rather than changing the weakest precondition to add an

additional component, we can instead capture this local crash condition through worlds and a

protocol transformer called DURA. We write TokC (𝑅𝑐) for a world stating a thread is responsible

for ensuring that the local crash invariant 𝑅𝑐 holds before and after each step it takes. The DURA
protocol forces a thread to show that this 𝑅 holds before and after each step of execution.

DURAW (Ψ) (𝑣,Φ) ≜ ∃𝑅𝑐 . Ψ(𝑣, 𝜆𝑟 . |⇛⊥ W⊕TokC (𝑅𝑐) (𝑅𝑐 ∧ |⇛
W⊕TokC (𝑅𝑐) ⊥Φ(𝑟)))

Notice that 𝑅𝑐 and the postcondition is connected by a logical conjunction ∧ because the program

can only either crash or continue so only one of 𝑅𝑐 and the postcondition will be used.

The derived proof rules for the crash handlers then require a specification for the top level main
procedure of the following form.

R ⊢ ewp
W⊕TokC (qR),⊥ main () ⟨DURAW (Ψ)⟩ {𝑟 . ∃𝑅𝑐 . |⇛⊥ W⊕TokC (𝑅𝑐) 𝑅𝑐 ∧ Φ(𝑣)}

Here, R is the global crash invariant that also serves as the precondition for main, and q is the
post-crash modality [46, 54] that captures how crashing modifies volatile and durable resources.

3
To install runcrash_trigger for every child thread, our Rocq mechanization actually integrates runcrash_trigger into runconc.

18 Zhang et al.

Intuitively, this says that the main thread starts with precondition R, and the initial crash condition

requires R holds after a crash.

Concurrency with Crashes. To add support for concurrency, we install the concurrency handler
below the outer crash handler. Because of the crash condition, we need to strengthen the CONC
protocol to a protocol called CRASHCONC.

CRASHCONCW (Ψ) ≜ DURAW (Ψ ⊕ FORK′
W
(Ψ))

FORK′
W
(Ψ) (𝑣,Φ) ≜ ∃𝑒. 𝑣 = (fork, 𝜆_. 𝑒) ∗
⊲ ewp

W⊕TokC (True),⊥ 𝑒 ⟨CRASHCONCW (Ψ)⟩ {∃𝑅𝑒 . |⇛⊥ W⊕TokC (𝑅𝑒) 𝑅𝑒 } ∗ Φ(())
CRASHCONC follows the same structure of CONC and is also a guarded fixed point. However, a

forked child thread starts with a trivial crash condition and can terminate with any crash condition.

When forking a child thread, one would naturally like to move some resources from the parent

thread to the child thread. Similarly, synchronization primitives like locks are logically thought of

as transferring ownership of resources in CSL. However, in order to transfer ownership of durable

resources that might be part of the crash condition, we also need a mechanism to transfer the

obligation to maintain that part of the crash condition. Crash borrows in Perennial [48] provide

a mechanism to “borrow” part of the crash condition as an ownable resource and transfer this

resource to the child thread. A crash borrow 𝑃 | 𝑅 has content 𝑃 that describes the resources

currently contained, and an associated crash obligation 𝑅, where □(𝑃 −∗ 𝑅).
The crash borrow can be understood as a box that packages up a resource 𝑃 while preserving

the obligation 𝑅 in the event of a crash. They are used through the following two key rules.

Wupd-CBrwAlloc

⊲ 𝑃 □(𝑃 −∗ 𝑅)
|⇛TokC (𝑅𝑐∗𝑅) TokC (𝑅𝑐) 𝑃 | 𝑅

Wupd-CBrwReturn

𝑃 | 𝑅
|⇛TokC (𝑅𝑐) TokC (𝑅𝑐∗𝑅) ⊲ 𝑃

Rule Wupd-CBrwAlloc creates a crash borrow 𝑃 | 𝑅 . It consumes a resource 𝑃 that is stronger

than 𝑅 and removes 𝑅 from the crash condition. Rule Wupd-CBrwReturn opens the box 𝑃 | 𝑅
to extract resource 𝑃 , in exchange, it adds 𝑅 to the crash condition. In Perennial, this crash borrow

mechanism is encoded on top of standard Iris invariants in a complex manner that requires

extensive use of later credits [44] to avoid inconsistencies from impredicative circularities. In Ficus,

the encoding is considerably simpler, because we are able to use a separate world for managing

crash conditions and crash borrows. The complete model can be found in Appendix C.

6.2 Asynchrony and Crash-Aware Prophecies
Many durable storage media are asynchronous, meaning that when a write is performed, the written

value does not immediately become durable. Instead, the written value is first stored in some

volatile buffer and only later made durable. If a crash occurs while the value is still in the volatile

buffer, then the write is lost. Reasoning about asynchrony is challenging when trying to prove

that a concurrent durable data structure satisfies durable linearizability [25], because it makes the

durability of an operation future dependent.
To deal with this challenge, Perennial introduced a prophetic disk points-to assertion of the form

𝑙 ↦→d [𝑣𝑐]𝑣 which says that the disk address 𝑙 currently stores the value 𝑣 , and after a crash occurs,

the stored address will be 𝑣𝑐 . In other words, this assertion bundles a normal points-to with a form

of prophecy about the post-crash state. However, in Perennial, this primitive could not re-use the

existing support for prophecies in Iris, and instead has an ad-hoc soundness proof. The issue is

that, with standard Iris prophecy variables, there is no way to make a prophecy about whether an

event will happen before or after a crash occurs.

Building Extensible Program Logics through Effect Handlers 19

In contrast, in Ficus it is easy to handle this by incorporating prophecy resolution as part of the

implementation of the crash handler. We use the observe () statement in runcrash to effectively
record that a crash has occurred in the trace of every prophecy variable. Formally, for every

prophecy variable 𝑝 , proph (𝑝, ®𝑣) ⊢ q(®𝑣 = 𝜀). The definition of filter in §5 ensures that this truncates

the trace of events in the prophecy stream for all variables. Thus, when inspecting the prophecy

stream, it is possible to determine whether a crash will occur before the prophecy is resolved.

We call these resulting prophecy variables crash-aware. Using this mechanism, we implement

an asynchronous disk with prophetic points-to assertions by resolving a crash-aware prophecy

whenever an asynchronous disk operation is performed. More details can be found in Appendix C.

7 Case Study: Distributed Systems with IronFleet-Style Atomic Blocks
In this section, we consider a distributed system with multiple nodes connected by an unreliable

network, in which nodes communicate through messages that may be dropped, delayed, duplicated,

or re-ordered. On top of the network, a global scheduler decides the order of execution of nodes.

Network. The network provides two operations. NETWORK ≜ SEND ⊕ RECV, where

SEND(𝑣,Φ) ≜ ∃𝑠, 𝑡,𝑚,𝑀. 𝑣 = (send, (𝑠, 𝑡,𝑚)) ∗ 𝑡 p{ 𝑀 ∗ (𝑡 p{ {(𝑠, 𝑡,𝑚)} ∪𝑀 −∗ Φ(()))

RECV(𝑣,Φ) ≜ ∃𝑡, 𝑀. 𝑣 = (recv, 𝑡) ∗ 𝑡 p{ 𝑀 ∗
(
∀𝑥 . 𝑡 p{ 𝑀 ∗

(
𝑥 = inl () ∨ (∃𝑠,𝑚. 𝑥 = inr

(𝑠, 𝑡,𝑚) ∧ (𝑠, 𝑡,𝑚) ∈ 𝑀) −∗ Φ(𝑥)

))
Assertion 𝑡 p{ 𝑀 says that𝑀 is the set of messages that have ever been sent to address 𝑡 . Since

messages can be arbitrarily duplicated, this set is monotonically increasing w.r.t. the subset relation.
The SEND protocol expects a package of (source address, destination address, message) as input,

and adds this package to the message history of the destination address. The RECV protocol expects

the destination address 𝑡 as input and non-deterministically chooses to either not return a message

or to return an arbitrary message that has been sent to 𝑡 . The dropping of a message is implicitly

modeled as just never having it be selected for receipt. Protocol NETWORK is provided by the

handler runnetwork which implements the network as a soup of messages [29, 57].

Scheduler with IronFleet-Style Atomic Blocks. Next, we need a scheduler rundist that specifies
how nodes run concurrently through a DISTR𝑡

W
protocol.

DISTR𝑡
W

≜ ATOMW (SEND ⊕ START𝑡
W
) ⊕ RECV

START𝑡
W
(𝑣,Φ) ≜ ∃𝑒. 𝑣 = (start, 𝜆_. 𝑒) ∗

(
𝑡 = C ∨ ⊲ ewp

W
𝑒 ⟨DISTRC

W
⟩ {_. True}

)
∗ Φ(())

The rundist handler resembles runconc and potentially transfers control to different nodes when an

effect is raised by a node. The START protocol is used for initially creating nodes. In the protocol

above, the RECV effect is outside the ATOM protocol transformer. The reason for this is that

rundist scheduler does not transfer control to another node when processing an recv operation. In

other words, a node can receive a series of messages without transferring control to another node.

This modeling choice is inspired by IronFleet [24] which uses a movers-based parallel reduction

proof [31] to treat a sequence of receives followed by a sequences of sends as an atomic step. Our

global scheduler permits the prover to view a series of recv operations, followed by a series node-

local processing operations, followed by one send operation as an atomic block.
4
As a result, because

the RECV is not included in the ATOM component, we do not need to close shared invariants when
performing a RECV operation.

Even though this scheduler does not include preemptions at RECV, the absence of these pre-
emptions does not affect the overall set of possible behaviors of the program. To prove this, we

4
We preempt after a single send because a node could diverge after sending. IronFleet avoids this by proving total correctness.

20 Zhang et al.

apply a similar technique as in §4, and use Banyan to prove that an explicit yield preemption is

contextually equvialent to the unit value. Thus, adding in additional preemptions does not change

the program’s behavior. To carry out this proof, we develop a node-local specification resource

specn𝛾𝑡 (𝑒), similar to the thread-local version described in §4. It also uses the evidence accumulation

technique described in §4.3, but additionally accumulates the evidence that a node can delay message

receipt without changing behavior. Intuitively, if a message𝑚 is received received at some time 𝑇 ,

then if we delay that receipt to some later time 𝑇 ′
, it is still possible to receive𝑚. We capture this

evidence using a monotonic resource algebra to track the set𝑀 of messages. More details can be

found in Appendix D.

8 Related Work
Program Logics for Effect Handlers. The most closely related work is the Hazel logic for effect

handlers [18]. As discussed in §2 and §3, Ficus extends Hazel with support for extensible worlds.

Hazel only handles unary reasoning, whereas Banyan supports relational reasoning through an

encoding into Ficus. Recently, de Vilhena et al. [20] developed Blaze, a relational logic for effect

handlers. Like Banyan, Blaze builds on a unary logic and represents a specification program via

ghost state. However, unlike Banyan, in which the unary logic and the specification program have

separate protocols, Blaze instead provides a judgement with a relational protocol. They use this to

prove refinements in which the interpretation of effects is different between the two programs. In

contrast, our examples keep effects the same on both sides and prove that client programs under

these effects are equivalent.

Among other examples, de Vilhena et al. [20] use Blaze to prove that a handler implementation of

concurrency refines a primitive concurrency effect. This refinement is in some sense the opposite of

the direction that motivated our refinement proof in §4: it essentially shows that for every execution

of the concurrency handler (which only preempts at effects), there is a corresponding execution

using primitive concurrency (which preempts at every step). In contrast, we show that inserting

additional preemption points when using the concurrency handler does not generate new behaviors.

This is morally equivalent to showing that the concurrency handler already covers all possible

heaviors that could be generated by a full interleaving semantics. It would be interesting to apply

Blaze’s approach to the kinds of applications we have considered here to justify the soundness of

alternate implementations of effects that allow for deriving stronger reasoning rules.

Our logical relations are for type systems with a fixed collection of effects and do not provide

rules for typing general effect handlers. Tes [19] and Affect [53] use logics to construct unary logical-

relations models for type systems for effect handlers. Biernacki et al. [9, 10] directly construct a

binary logical-relations model for effects and handlers using biorthogonality and step indexing.

Extensible Program Logics. As described in the introduction, Vistrup et al. [55] develop an

approach to extensible program logics using ITrees [58]. They use a mechanism called logical
effect handlers to interpret ITree events for an effect, which has similarities to the way Hazel and

Ficus’s protocols give a logical interpretation of what a raised effect will do. Their soundness proofs

relate these logical effect handlers to interpretations of the effects. In contrast, the corresponding

soundness of a protocol in Ficus is justified by the rule for try that installs an effect handler and

makes the protocol accessible. Since the handlers are themselves just programs written in FicusLang,

one uses Ficus itself to prove these handlers implement the protocol. Thus there is no distinction

between verifying a program and proving the soundness of an extension to the logic. Another

difference is that using the the effect handler approach, we are able to develop a relational logic by

representing a specification program as ghost state. Vistrup et al. [55] do not develop a relational

Building Extensible Program Logics through Effect Handlers 21

logic. On the other hand, they show how to model other features, such as total correctness and

angelic non-determinism, which we do not consider.

Like Ficus’s extensible worlds, Matsushita and Tsukada [33] parameterize the Iris update modality

and Hoare triples by a notion of a world. However, they require that the update shifts to the same

world before and after, i.e., only considering shifts of the form |⇛
W W

. Hence, they cannot model

the use of extensible worlds in §3, in which invariants are kept open across non-preempting steps.

Dijkstra Monads [45] offer a framework for deriving pre- and postcondition reasoning about

dependently-typed programs with monadic effects, and, more recently, some aspects of algebraic

effect handlers [32]. However, Dijkstra Monads have not been applied to effects like concurrency,

crashes, or distributed execution, which might be challenging to encode as monads in a composi-

tional way. Existing work on Dijkstra Monads does not support relational reasoning.

References
[1] Martín Abadi and Leslie Lamport. 1988. The Existence of Refinement Mappings. In Proceedings of the Third Annual

Symposium on Logic in Computer Science (LICS ’88), Edinburgh, Scotland, UK, July 5-8, 1988. 165–175. doi:10.1109/LICS.
1988.5115

[2] Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, Shin-ya Katsumata, and Tetsuya Sato. 2021. Higher-

order probabilistic adversarial computations: categorical semantics and program logics. Proc. ACM Program. Lang. 5,
ICFP (2021), 1–30. doi:10.1145/3473598

[3] Alejandro Aguirre, Philipp G. Haselwarter, Markus de Medeiros, Kwing Hei Li, Simon Oddershede Gregersen, Joseph

Tassarotti, and Lars Birkedal. 2024. Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order

Probabilistic Programs. Proc. ACM Program. Lang. 8, ICFP (2024), 284–316. doi:10.1145/3674635

[4] Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. 2007. A very modal model of a

modern, major, general type system. In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2007, Nice, France, January 17-19, 2007. 109–122. doi:10.1145/1190216.1190235

[5] Jialu Bao, Emanuele D’Osualdo, and Azadeh Farzan. 2025. Bluebell: An Alliance of Relational Lifting and Independence

for Probabilistic Reasoning. Proc. ACM Program. Lang. 9, POPL (2025), 1719–1749. doi:10.1145/3704894

[6] Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, Léo Stefanesco, and Pierre-Yves Strub. 2015. Relational

Reasoning via Probabilistic Coupling. In Logic for Programming, Artificial Intelligence, and Reasoning - 20th International
Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings. 387–401. doi:10.1007/978-3-662-48899-7_27

[7] Gilles Barthe, Justin Hsu, and Kevin Liao. 2020. A probabilistic separation logic. Proc. ACM Program. Lang. 4, POPL
(2020), 55:1–55:30. doi:10.1145/3371123

[8] Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019. Quantitative

separation logic: a logic for reasoning about probabilistic pointer programs. Proc. ACM Program. Lang. 3, POPL (2019),

34:1–34:29. doi:10.1145/3290347

[9] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2017. Handle with care: relational interpretation

of algebraic effects and handlers. Proc. ACM Program. Lang. 2, POPL, Article 8 (Dec. 2017), 30 pages. doi:10.1145/3158096
[10] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2020. Binders by day, labels by night: effect

instances via lexically scoped handlers. Proc. ACM Program. Lang. 4, POPL (2020), 48:1–48:29. doi:10.1145/3371116

[11] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. 2012. First steps in synthetic

guarded domain theory: step-indexing in the topos of trees. Log. Methods Comput. Sci. 8, 4 (2012). doi:10.2168/LMCS-

8(4:1)2012

[12] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. 2019. Verifying concurrent, crash-safe

systems with Perennial. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP 2019,
Huntsville, ON, Canada, October 27-30, 2019. 243–258. doi:10.1145/3341301.3359632

[13] Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung, M. Frans Kaashoek, and Nickolai Zeldovich. 2021. GoJournal:

a verified, concurrent, crash-safe journaling system. In 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21). USENIX Association, 423–439. https://www.usenix.org/conference/osdi21/presentation/

chajed

[14] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2015. Using

Crash Hoare logic for certifying the FSCQ file system. In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015. 18–37. doi:10.1145/2815400.2815402

[15] Krzysztof Ciesielski. 2007. On Stefan Banach and some of his results. Banach Journal of Mathematical Analysis 1, 1
(2007), 1–10. doi:10.15352/bjma/1240321550

https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1145/3473598
https://doi.org/10.1145/3674635
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/3704894
https://doi.org/10.1007/978-3-662-48899-7_27
https://doi.org/10.1145/3371123
https://doi.org/10.1145/3290347
https://doi.org/10.1145/3158096
https://doi.org/10.1145/3371116
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1145/3341301.3359632
https://www.usenix.org/conference/osdi21/presentation/chajed
https://www.usenix.org/conference/osdi21/presentation/chajed
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.15352/bjma/1240321550

22 Zhang et al.

[16] Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen, William Mansky, Jeehoon Kang, and Derek Dreyer.

2022. Compass: strong and compositional library specifications in relaxed memory separation logic. In Proceedings of
the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation (San Diego, CA,

USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 792–808. doi:10.1145/3519939.3523451

[17] Paulo de Vilhena. 2022. Proof of Programs with Effect Handlers. (Preuve de Programmes avec Effect Handlers). Ph. D.
Dissertation. Paris Cité University, France. https://tel.archives-ouvertes.fr/tel-03891381

[18] Paulo Emílio de Vilhena and François Pottier. 2021. A separation logic for effect handlers. Proc. ACM Program. Lang. 5,
POPL, Article 33 (Jan. 2021), 28 pages. doi:10.1145/3434314

[19] Paulo Emílio de Vilhena and François Pottier. 2023. A Type System for Effect Handlers and Dynamic Labels. In

Programming Languages and Systems - 32nd European Symposium on Programming, ESOP 2023, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings.
225–252. doi:10.1007/978-3-031-30044-8_9

[20] Paulo Emílio de Vilhena, Simcha van Collem, Ines Wright, and Robbert Krebbers. 2025. A Relational Separation Logic

for Effect Handlers. (November 2025). https://devilhena-paulo.github.io/files/blaze.pdf.

[21] Pietro Di Gianantonio and Marino Miculan. 2003. A Unifying Approach to Recursive and Co-recursive Definitions.

In Types for Proofs and Programs, Herman Geuvers and Freek Wiedijk (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 148–161.

[22] Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2011. Logical Step-Indexed Logical Relations. Log. Methods Comput.
Sci. 7, 2 (2011). doi:10.2168/LMCS-7(2:16)2011

[23] Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal. 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic. Proc. ACM Program. Lang. 8, POPL (2024),

753–784. doi:10.1145/3632868

[24] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael Lowell Roberts, Srinath T. V.

Setty, and Brian Zill. 2015. IronFleet: proving practical distributed systems correct. In Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015. 1–17. doi:10.1145/2815400.2815428

[25] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. 2016. Linearizability of Persistent Memory Objects

Under a Full-System-Crash Failure Model. In Distributed Computing - 30th International Symposium, DISC 2016, Paris,
France, September 27-29, 2016. Proceedings (Lecture Notes in Computer Science, Vol. 9888), Cyril Gavoille and David

Ilcinkas (Eds.). Springer, 313–327. doi:10.1007/978-3-662-53426-7_23

[26] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from

the ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
doi:10.1017/S0956796818000151

[27] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs.

2020. The future is ours: prophecy variables in separation logic. Proc. ACM Program. Lang. 4, POPL (2020), 45:1–45:32.

doi:10.1145/3371113

[28] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong Logic for Weak

Memory: Reasoning About Release-Acquire Consistency in Iris. In 31st European Conference on Object-Oriented
Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain. 17:1–17:29. doi:10.4230/LIPICS.ECOOP.2017.17

[29] Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen, and Lars Birkedal.

2020. Aneris: A Mechanised Logic for Modular Reasoning about Distributed Systems. In Programming Languages and
Systems - 29th European Symposium on Programming, ESOP 2020, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings. 336–365. doi:10.1007/978-3-
030-44914-8_13

[30] Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries Reasoning for Weak Memory Models. In Automata, Languages, and
Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II. 311–323.
doi:10.1007/978-3-662-47666-6_25

[31] Richard J. Lipton. 1975. Reduction: A New Method of Proving Properties of Systems of Processes. In Conference Record
of the Second ACM Symposium on Principles of Programming Languages, Palo Alto, California, USA, January 1975,
Robert M. Graham, Michael A. Harrison, and John C. Reynolds (Eds.). ACM Press, 78–86. doi:10.1145/512976.512985

[32] Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Catalin Hritcu, Exequiel Rivas, and Éric Tanter. 2019.

Dijkstra monads for all. Proc. ACM Program. Lang. 3, ICFP (2019), 104:1–104:29. doi:10.1145/3341708

[33] Yusuke Matsushita and Takeshi Tsukada. 2025. Nola: Later-Free Ghost State for Verifying Termination in Iris. Proc.
ACM Program. Lang. 9, PLDI (2025), 98–124. doi:10.1145/3729250

[34] Glen Mével and Jacques-Henri Jourdan. 2021. Formal verification of a concurrent bounded queue in a weak memory

model. Proc. ACM Program. Lang. 5, ICFP, Article 66 (Aug. 2021), 29 pages. doi:10.1145/3473571
[35] Hiroshi Nakano. 2000. A Modality for Recursion. In 15th Annual IEEE Symposium on Logic in Computer Science, Santa

Barbara, California, USA, June 26-29, 2000. 255–266. doi:10.1109/LICS.2000.855774

https://doi.org/10.1145/3519939.3523451
https://tel.archives-ouvertes.fr/tel-03891381
https://doi.org/10.1145/3434314
https://doi.org/10.1007/978-3-031-30044-8_9
https://devilhena-paulo.github.io/files/blaze.pdf
https://doi.org/10.2168/LMCS-7(2:16)2011
https://doi.org/10.1145/3632868
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.4230/LIPICS.ECOOP.2017.17
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1145/512976.512985
https://doi.org/10.1145/3341708
https://doi.org/10.1145/3729250
https://doi.org/10.1145/3473571
https://doi.org/10.1109/LICS.2000.855774

Building Extensible Program Logics through Effect Handlers 23

[36] Gian Ntzik, Pedro da Rocha Pinto, and Philippa Gardner. 2015. Fault-Tolerant Resource Reasoning. In Programming
Languages and Systems - 13th Asian Symposium, APLAS 2015, Pohang, South Korea, November 30 - December 2, 2015,
Proceedings. 169–188. doi:10.1007/978-3-319-26529-2_10

[37] Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. Theor. Comput. Sci. 375, 1-3 (2007), 271–307.
doi:10.1016/j.tcs.2006.12.035

[38] Susan S. Owicki and David Gries. 1976. An Axiomatic Proof Technique for Parallel Programs I. Acta Informatica 6
(1976), 319–340. doi:10.1007/BF00268134

[39] Gordon D. Plotkin and John Power. 2001. Adequacy for Algebraic Effects. In Foundations of Software Science and
Computation Structures, 4th International Conference, FOSSACS 2001 Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings. 1–24. doi:10.1007/3-540-45315-6_1

[40] Gordon D. Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In Programming Languages and Systems,
18th European Symposium on Programming, ESOP 2009, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings. 80–94. doi:10.1007/978-3-642-00590-9_7

[41] Azalea Raad, Ori Lahav, and Viktor Vafeiadis. 2020. Persistent Owicki-Gries reasoning: a program logic for reasoning

about persistent programs on Intel-x86. Proc. ACM Program. Lang. 4, OOPSLA (2020), 151:1–151:28. doi:10.1145/3428219

[42] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In 17th IEEE Symposium on
Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings. 55–74. doi:10.1109/LICS.
2002.1029817

[43] Upamanyu Sharma, Ralf Jung, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. 2023. Grove: a Separation-

Logic Library for Verifying Distributed Systems. In Proceedings of the 29th Symposium on Operating Systems Principles,
SOSP 2023, Koblenz, Germany, October 23-26, 2023. 113–129. doi:10.1145/3600006.3613172

[44] Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2022.

Later credits: resourceful reasoning for the later modality. Proc. ACM Program. Lang. 6, ICFP, Article 100 (Aug. 2022),
29 pages. doi:10.1145/3547631

[45] Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin Livshits. 2013. Verifying higher-order

programs with the dijkstra monad. In ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013. 387–398. doi:10.1145/2491956.2491978

[46] Joseph Tassarotti, Tej Chajed, and Perennial contributors. 2021. Crash Borrow in Perennial’s Mechaniza-

tion. https://github.com/mit-pdos/perennial/blob/c4c806b6ede0580dc8cb72ca873d25e3fb7e564d/src/goose_lang/

crash_modality.v

[47] Joseph Tassarotti and Robert Harper. 2019. A separation logic for concurrent randomized programs. Proc. ACM
Program. Lang. 3, POPL (2019), 64:1–64:30. doi:10.1145/3290377

[48] Joseph Tassarotti and Perennial contributors. 2022. Crash Borrow in Perennial’sMechanization. https://github.com/mit-

pdos/perennial/blob/5189a4eccc8583a7042ccccbbb3bb13cfb57e4c5/src/goose_lang/crash_borrow.v

[49] Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2024. A Logical Approach to Type Soundness. J.
ACM 71, 6 (2024), 40:1–40:75. doi:10.1145/3676954

[50] Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying refinement and hoare-style reasoning in a logic for

higher-order concurrency. In ACM SIGPLAN International Conference on Functional Programming, ICFP’13, Boston, MA,
USA - September 25 - 27, 2013. 377–390. doi:10.1145/2500365.2500600

[51] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: navigating weak memory with ghosts, protocols,

and separation. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014. 691–707.
doi:10.1145/2660193.2660243

[52] Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation logic: a program logic for C11 concurrency. In

Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages
& Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013. 867–884. doi:10.1145/
2509136.2509532

[53] Orpheas van Rooij and Robbert Krebbers. 2025. Affect: An Affine Type and Effect System. Proc. ACM Program. Lang. 9,
POPL, Article 5 (Jan. 2025), 29 pages. doi:10.1145/3704841

[54] Simon Friis Vindum, Aïna Linn Georges, and Lars Birkedal. 2025. The Nextgen Modality: A Modality for Non-Frame-

Preserving Updates in Separation Logic. In Proceedings of the 14th ACM SIGPLAN International Conference on Certified
Programs and Proofs (Denver, CO, USA) (CPP ’25). Association for Computing Machinery, New York, NY, USA, 83–97.

doi:10.1145/3703595.3705876

[55] Max Vistrup, Michael Sammler, and Ralf Jung. 2025. Program Logics à la Carte. Proc. ACM Program. Lang. 9, POPL
(2025), 300–331. doi:10.1145/3704847

[56] James R. Wilcox, Ilya Sergey, and Zachary Tatlock. 2017. Programming Language Abstractions for Modularly Verified

Distributed Systems. In 2nd Summit on Advances in Programming Languages, SNAPL 2017, May 7-10, 2017, Asilomar,

https://doi.org/10.1007/978-3-319-26529-2_10
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1007/BF00268134
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1145/3428219
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3600006.3613172
https://doi.org/10.1145/3547631
https://doi.org/10.1145/2491956.2491978
https://github.com/mit-pdos/perennial/blob/c4c806b6ede0580dc8cb72ca873d25e3fb7e564d/src/goose_lang/crash_modality.v
https://github.com/mit-pdos/perennial/blob/c4c806b6ede0580dc8cb72ca873d25e3fb7e564d/src/goose_lang/crash_modality.v
https://doi.org/10.1145/3290377
https://github.com/mit-pdos/perennial/blob/5189a4eccc8583a7042ccccbbb3bb13cfb57e4c5/src/goose_lang/crash_borrow.v
https://github.com/mit-pdos/perennial/blob/5189a4eccc8583a7042ccccbbb3bb13cfb57e4c5/src/goose_lang/crash_borrow.v
https://doi.org/10.1145/3676954
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1145/3704841
https://doi.org/10.1145/3703595.3705876
https://doi.org/10.1145/3704847

24 Zhang et al.

CA, USA. 19:1–19:12. doi:10.4230/LIPICS.SNAPL.2017.19
[57] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas E. Anderson.

2015. Verdi: a framework for implementing and formally verifying distributed systems. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015.
357–368. doi:10.1145/2737924.2737958

[58] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic.

2020. Interaction trees: representing recursive and impure programs in Coq. Proc. ACM Program. Lang. 4, POPL (2020),

51:1–51:32. doi:10.1145/3371119

https://doi.org/10.4230/LIPICS.SNAPL.2017.19
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/3371119

Building Extensible Program Logics through Effect Handlers 25

A Ficus
A.1 Semantics

Head reduction rules. 𝑒
®𝜅−→h 𝑒

′

Hd-Beta (rec 𝑓 𝑥 . 𝑒) 𝑣 𝜀−→h 𝑒 [(rec 𝑓 𝑥 . 𝑒), 𝑣/𝑓 , 𝑥]
Hd-EffApR 𝑒1 §(𝑁) [𝑣2]

𝜀−→h §(𝑒1 𝑁) [𝑣2]
Hd-EffApL §(𝑁) [𝑣1] 𝑣2

𝜀−→h §(𝑁 𝑣2) [𝑣1]
Hd-EffDo do §(𝑁) [𝑣] 𝜀−→h §(do 𝑁) [𝑣]

Hd-Cont (cont 𝑁) 𝑣 𝜀−−→h 𝑁 [𝑣]
Hd-Do do 𝑣

𝜀−−→h §([]) [𝑣]
Hd-Pick pick

𝜀−−→h 𝑧

Hd-Obs observe 𝑣
[𝑣]
−−→h ()

Hd-TryEff try §(𝑁) [𝑣0] with 𝑣1 𝑘 ⇒ 𝑒1 | ret 𝑣2 ⇒ 𝑒2
𝜀−→h 𝑒1 [𝑣0, cont 𝑁 /𝑣1, 𝑘]

Hd-TryVal try 𝑣0 with 𝑣1 𝑘 ⇒ 𝑒1 | ret 𝑣2 ⇒ 𝑒2
𝜀−→h 𝑒2 [𝑣0/𝑣2]

Pure Reduction and Its Reflexive Transitive Closure. 𝑒
®𝜅−→ 𝑒′ and 𝑒

®𝜅−→∗ 𝑒′

𝑒
®𝜅−→ 𝑒′ ≜ ∃𝐾, 𝑒, 𝑒′ . 𝑒 = 𝐾 [𝑒] ∧ 𝑒′ = 𝐾 [𝑒′] ∧ 𝑒 ®𝜅−→h 𝑒

′

𝑒
®𝜅−→∗ 𝑒′ ≜ (𝑒 = 𝑒′ ∧ ®𝜅 = 𝜀) ∨ (∃𝑒′′, ®𝜅1, ®𝜅2. ®𝜅 = ®𝜅1 ++ ®𝜅2 ∧ 𝑒

®𝜅1−→h 𝑒
′′ ∧ 𝑒′′ ®𝜅2−→∗ 𝑒′)

A.2 Reasoning Rules
Ewp-Value

|⇛
W1 W2

Φ(𝑣)
ewp

W1,W2

𝑣 ⟨Ψ⟩ {Φ}

Ewp-Do

Ψ(𝑣,Φ)
ewp

W
do 𝑣 ⟨Ψ⟩ {Φ}

Ewp-DoFupd

|⇛
W1 ⊥Ψ(𝑣, (𝜆𝑟 . |⇛⊥ W2

Φ(𝑟)))
ewp

W1,W2

do 𝑣 ⟨Ψ⟩ {Φ}

Ewp-Mono

ewp
W1,W2

𝑒 ⟨Ψ⟩ {Φ} Ψ ⊑ Ψ′ ∀𝑣 . Φ(𝑣) −∗ |⇛
W2

Φ′ (𝑣)
ewp

W1,W2

𝑒 ⟨Ψ′⟩ {Φ′}

Ewp-WorldMono

ewp
W
𝑒 ⟨Ψ⟩ {Φ} W ⊑ W

′

ewp
W

′ 𝑒 ⟨Ψ⟩ {Φ}

Ewp-Frame

𝑅 ewp
W1,W2

𝑒 ⟨Ψ⟩ {Φ}
ewp

W1,W2

𝑒 ⟨Ψ⟩ {𝑣 . 𝑅 ∗ Ψ(𝑣)}

Ewp-WupdPre

|⇛
W1 W2

ewp
W2,W3

𝑒 ⟨Ψ⟩ {Φ}
ewp

W1,W3

𝑒 ⟨Ψ⟩ {Φ}

Ewp-WupdPost

ewp
W1,W2

𝑒 ⟨Ψ⟩ {𝑣 . |⇛
W2 W3

Φ(𝑣)}
ewp

W1,W3

𝑒 ⟨Ψ⟩ {Φ}

Ewp-Pure

ewp
W1,W2

𝑒 ⟨Ψ⟩ {Φ} 𝑒′ −→∗ 𝑒

ewp
W1,W2

𝑒′ ⟨Ψ⟩ {Φ}

Ewp-Bind

ewp
W1,W2

𝑒 ⟨Ψ⟩ {𝑣 . ewp
W2,W3

𝑁 [𝑣] ⟨Ψ⟩ {Φ}}
ewp

W1,W3

𝑁 [𝑒] ⟨Ψ⟩ {Φ}

Ewp-WorldFrame

ewp
W1,W2

𝑒 ⟨Ψ⟩ {Φ}
ewp

W1⊕W,W2⊕W 𝑒 ⟨Ψ⟩ {Φ}

Ewp-Obs

primProph (®𝑣)
ewp

W
observe𝑤 ⟨Ψ⟩ {_. ∃®𝑣 ′ . ®𝑣 = 𝑤 :: ®𝑣 ′ ∗ primProph (®𝑣 ′)}

A.3 Model

ewp
W1,W2

𝑣 ⟨Ψ⟩ {Φ} ≜ |⇛
W1 W2

Φ(𝑣)
ewp

W1,W2

§(𝑁) [𝑣] ⟨Ψ⟩ {Φ} ≜ |⇛
W1 ⊥Ψ(𝑣, 𝜆𝑤. |⇛⊥ ⊲(ewp⊥,W2

𝑁 [𝑤] ⟨Ψ⟩ {Φ}))
ewp

W1,W2

𝑒 ⟨Ψ⟩ {Φ} ≜ ∀®𝜅1, ®𝜅2. primProph• (®𝜅1 ++ ®𝜅2) −∗ |⇛
W1 ⊥ (∃𝑒′ . 𝑒 → 𝑒′)∗

26 Zhang et al.

∀𝑒′ . 𝑒 ®𝜅1−→ 𝑒′ −∗ |⇛⊥ ⊲ |⇛⊥primProph• (®𝜅2) ∗ ewp⊥,W2

𝑒′ ⟨Ψ⟩ {Φ}

primProph• (®𝑣) ≜ •Ex(®𝑣) 𝛾𝑝 primProph (®𝑣) ≜ ◦Ex(®𝑣) 𝛾𝑝

B Prophetic Heap

PROPH_ALLOC(𝑣,Φ) ≜ ∃𝑥 . 𝑣 = (alloc, 𝑥) ∗ (∀𝑙, ®𝑣 . 𝑙 ↦→ 𝑥 ∗ proph (𝑙, ®𝑣) prophE (𝑙) −∗ Φ(𝑙))
PROPH_LOAD(𝑣,Φ) ≜ ∃𝑙, 𝑥, ®𝑣 . 𝑣 = (load, 𝑙) ∗ 𝑙 ↦→ 𝑥 ∗ proph (𝑙, ®𝑣) ∗ prophE (𝑙) ∗

(∀®𝑣 ′ . 𝑙 ↦→ 𝑥 ∗ 𝑣 = (𝑥, load) :: ®𝑣 ′ ∗ proph (𝑙, ®𝑣 ′) ∗ prophE (𝑙) −∗ Φ(𝑥))

PROPH_LOAD′ (𝑣,Φ) ≜ ∃𝑙, 𝑞, 𝑥 . 𝑣 = (load, 𝑙) ∗ 𝑙
𝑞
↦→ 𝑥 ∗ prophD (𝑙) ∗ (𝑙

𝑞
↦→ 𝑥 −∗ Φ(𝑥))

PROPH_STORE(𝑣,Φ) ≜ ∃𝑙, 𝑥,𝑦, ®𝑣 . 𝑣 = (store, (𝑙, 𝑦)) ∗ 𝑙 ↦→ 𝑥 ∗ proph (𝑙, ®𝑣) ∗ prophE (𝑙) ∗
(∀®𝑣 ′ . 𝑙 ↦→ 𝑦 ∗ ®𝑣 = ((), store(𝑦)) :: ®𝑣 ′ ∗ proph (𝑙, ®𝑣 ′) ∗ prophE (𝑙) −∗ Φ(()))

PROPH_CAS(𝑣,Φ) ≜ ∃𝑙,𝑤, 𝑥,𝑦, ®𝑣 . 𝑣 = (cas, (𝑙, 𝑥,𝑦)) ∗ 𝑙 ↦→ 𝑤 ∗ proph (𝑙, ®𝑣) ∗ prophE (𝑙) ∗
(∀®𝑣 ′ . 𝑙 ↦→ (if𝑤 = 𝑥 then 𝑦 else𝑤) ∗ ®𝑣 = (𝑤 = 𝑥, cas(𝑥,𝑦)) :: ®𝑣 ′∗
proph (𝑙, ®𝑣 ′) ∗ prophE (𝑙) −∗ Φ(𝑤,𝑤 = 𝑥))

PROPH_CAS′ (𝑣,Φ) ≜ ∃𝑙, 𝑞,𝑤, 𝑥,𝑦. 𝑣 = (cas, (𝑙, 𝑥,𝑦)) ∗ 𝑙
𝑞
↦→ 𝑤 ∗𝑤 ≠ 𝑥 ∗ prophD (𝑙) ∗

(𝑙
𝑞
↦→ 𝑤 −∗ Φ(𝑤, false))

C Crash Recovery System
This section uses the complete TokC (E, 𝑅𝑐) token. Compared to TokC (𝑅𝑐) used in §6, it has one

extra parameter for the enabled crash borrows. The connection between two tokens is TokC (𝑅𝑐) =
TokC (⊤, 𝑅𝑐).

C.1 Post-crash Modality

crashed ≜ ∃𝑀 : PID → List(Val × Val). 𝑀 𝛾proph ∗ ∀𝑝 ↦→ ®𝑣 ∈ 𝑀. ®𝑣 = 𝜀
q𝑃 ≜ crashed −∗ crashed ∗ 𝑃

C.2 Protocol
R is the global crash invariant. There is no requirement on Φ because crash will never return.

CRASHCONC intentionally uses the same tag as the regular CONC protocol to prevent having two

schedulers. As said by the FORK′
protocol, a child thread is permitted to change the crash condition

during execution, as long as it is consistent with the TokC (E, 𝑅) token. The crash condition cannot

be violated even if a thread terminates.

CRASH(𝑣,Φ) ≜ 𝑣 = (crash, ()) ∗ (|⇛R)
DURAW (Ψ) (𝑣,Φ) ≜ ∃𝑅. Ψ(𝑣, (𝜆𝑟 . |⇛⊥ W⊕TokC (⊤,𝑅) (𝑅 ∧ |⇛

W⊕TokC (⊤,𝑅) ⊥Φ(𝑟))))
CRASHCONCW (Ψ) ≜ DURAW (Ψ ⊕ FORK′

W
(Ψ))

FORK′
W
(Ψ) (𝑣,Φ) ≜ ∃𝑒. 𝑣 = (fork, 𝜆_. 𝑒)∗

⊲ ewp
W⊕TokC (⊤,True),⊥ 𝑒 ⟨CRASHCONCW (Ψ)⟩

{
∃𝑅𝑒 . |⇛⊥ W⊕TokC (⊤,𝑅𝑒) 𝑅𝑒

}
∗ Φ(())

Building Extensible Program Logics through Effect Handlers 27

Interaction between protocols:

DURAW (Ψ) ⊑ ATOMW (Ψ) ⊏∼ Ψ ATOMW (Ψ) ⊑ CONCW (Ψ)

DURAW (Ψ) ⊑ CRASHCONCW (Ψ)
Ewp-Seq-Atom

ewp
W𝑙
𝑒 ⟨Ψ⟩ {Φ}

ewp
W𝑙⊕W 𝑒 ⟨ATOMW (Ψ)⟩ {Φ}

Ewp-Atom-Dura

□(𝑅′ −∗ 𝑅) 𝑅′ ewp
W
𝑒 ⟨ATOMW (Φ)⟩ {𝑣 . 𝑅′ −∗ Φ(𝑣)}

ewp
W⊕TokC (⊤,𝑅) 𝑒 ⟨DURAW (Φ)⟩ {Φ}

Ewp-Conc-Crashconc

ewp
W
𝑒 ⟨CONCW (Φ)⟩ {Φ}

ewp
W⊕TokC (⊤,True) 𝑒 ⟨CRASHCONCW (Φ)⟩ {Φ}

C.3 Crash Hoare Logic

ewpc0(E1,𝑅1),(E2,𝑅2) 𝑒 ⟨Ψ⟩ {Φ} ≜ ewp
W1,W2

𝑒
〈
CRASHCONCTokI (⊤) (Ψ)

〉
{Φ}

where W𝑖 ≜ TokI (E𝑖) ⊕ TokC (E𝑖 , 𝑅𝑖)
The ewpc assertion does not support the monotonic rule, but this will not become a restriction in

practice because one can always use the upward closure of a non-mask-changing ewpc.

ewpc(E,𝑅) 𝑒 ⟨Ψ⟩ {Φ} ≜ ∀𝑅′,Φ′ . (∀𝑣 . Φ(𝑣) −∗ Φ′ (𝑣)) ∧ (𝑅 −∗ 𝑅′) −∗ ewpc0(E,𝑅′) 𝑒 ⟨Ψ⟩ {Φ
′}

The logical conjunction ∧ between Φ and 𝑅 precisely captures the monotonicity in a crash system.

Only one part of this conjunction is needed at a time. The Φ part is used during normal execution

and the 𝑅 part is used when the system crashes.

C.4 Crash Borrow
See Figures 7 and 8.

C.5 Asynchronous Disk
The client rules about the asynchronous disk are specified by protocols in Figure 9a. Resource

𝑙 ↦→d [𝑣𝑐]𝑣 declares the ownership of an asynchronous disk location 𝑙 . There are two values

associated with one location: 𝑣 is the value visible to the system before crash, and 𝑣𝑐 is the value

visible to the system after crash. Using the post-crash modality, this means 𝑙 ↦→d [𝑣𝑐]𝑣 ⊢ q𝑙 ↦→d 𝑣𝑐 .

Notice that because asynchronous disk is essentially a synchronous disk plus a software buffer, the

points-to assertion will become a regular disk points-to 𝑙 ↦→d 𝑣𝑐 after crash. Only at the recovery

stage will the asynchronous disk points-to assertion be recreated: 𝑙 ↦→d 𝑣𝑐 ⊢ ♦𝑙 ↦→d [𝑣𝑐]𝑣𝑐 , where ♦
is called setup modality.

The ADISK_LOAD protocol is standard. According to protocol ADISK_STORE, an adisk_store
effect immediately updates the before-crash value at location 𝑙 to𝑤 , but the after-crash value 𝑣 ′𝑐
could be either𝑤 or 𝑣𝑐 depending on whether the buffer will be written back before the next crash.

An adisk_barrier effect issues a global write barrier that writes-back the whole buffer to the disk.

Therefore, the client can use this effect to write-back an arbitrary number of locations. Because the

buffer was indeed written back before crash, we now know that 𝑣𝑐 must have equaled to 𝑣 .

Use of Prophecy Variables in the Effect Handler. The handler for asynchronous disk is shown

in Figure 9b and important logic constructions used to verify it are listed in Figure 9c. It uses a

volatile state to store the buffer. For each buffered location, the handler associates a prophecy

variable to it, indicating whether this location will be written back before crash. For buffer item

𝑙 ↦→ (𝑣, 𝑝), the value 𝑣 will be written back iff ∃®𝑣 ′ . proph (𝑝, ((), true) :: ®𝑣 ′), which is formalized

28 Zhang et al.

Wupd-CBrwAlloc

⊲ 𝑃 □(⊲ 𝑃 −∗ ⊲𝑅)

|⇛TokC (E,𝑅𝑐∗𝑅) TokC (E,𝑅𝑐) 𝑃 | 𝑅 N

Wupd-CBrwReturn

𝑃 | 𝑅 N N ⊆ E
|⇛TokC (E,𝑅𝑐) TokC (E,𝑅𝑐∗𝑅) ⊲ 𝑃

Wupd-CBrwRename

𝑃 | 𝑅 N N ⊆ E

|⇛TokC (E,𝑅𝑐) 𝑃 | 𝑅 N′

Wupd-CBrwAccUpdate

𝑃 | 𝑅 N N ⊆ E

|⇛TokC (E,𝑅𝑐) TokC (E\N,𝑅𝑐) ⊲ 𝑃 ∗
(
∀𝑄. ⊲𝑄 ∗ □(⊲𝑄 −∗ ⊲𝑅) −∗ |⇛TokC (E\N,𝑅𝑐) TokC (E,𝑅𝑐) 𝑄 | 𝑅 N)

Wupd-CBrwMono

𝑃 | 𝑅 N
⊲□(𝑃 ′ −∗ 𝑅′) ⊲(𝑃 −∗ 𝑃 ′) ⊲□(𝑅′ −∗ 𝑅) N ⊆ E

|⇛TokC (E,𝑅𝑐) 𝑃
′ | 𝑅′ N

Wupd-CBrwSplit

𝑃1 ∗ 𝑃2 | 𝑅1 ∗ 𝑅2
N

□(⊲ 𝑃1 −∗ ⊲𝑅1) □(⊲ 𝑃2 −∗ ⊲𝑅2) N ⊆ E

|⇛TokC (E,𝑅𝑐) 𝑃1 | 𝑅1
N ∗ 𝑃2 | 𝑅2

N

Wupd-CBrwCombine

𝑃1 | 𝑅1
N

𝑃2 | 𝑅2
N N ⊆ E

|⇛TokC (E,𝑅𝑐) 𝑃1 ∗ 𝑃2 | 𝑅1 ∗ 𝑅2
N

(a) Client rules.

Wsat-CinvAlloc

|⇛∃𝛾brw, 𝛾cinv, 𝛾cinvset, 𝛾cond, 𝛾active. TokC (⊤,R) ∗ ◦Ex({𝜄}) 𝛾cinvset ∗ •Ex(𝜄) 𝛾active ∗ CInv(R)

Wsat-CinvDestruct

◦Ex(dom(𝐼)) 𝛾cinvset ∗
𝜄 ↦→𝑅𝑐 ∈𝐼

◦{𝜄 ↦→ Ag(▶𝑅𝑐)}
𝛾cond ∗ ⊲𝑅𝑐 CInv(R) WCBrw ⊤ 𝐸

|⇛ ▷ R

(b) Handler rules.

Fig. 7. Reasoning rules of crash borrows and crash conditions.

by the willWB assertion. For a adisk_load effect, the handler returns the cached value if location

𝑙 is in the buffer (line 4), otherwise, it uses disk_load operation to load the value directly from the

physical disk and buffers the result (line 5). For a adisk_store effect, the handler always writes the
result to the buffer, but if the location is already in the buffer, the handler will resolve the associated

prophecy variable to false, meaning that the old value in the buffer will never be written back

(as it has been overwritten by the new value). For a barrier effect, the handler writes back the

whole buffer and resolves each prophecy variable to true. In the event of a crash, all prophecy

variables will become 𝜀 and because 𝜀 ≠ ((), true) :: _, we learn that remaining values in the buffer

will never be written back.

Concretely, the asynchronous disk points-to assertion 𝑙 ↦→d [𝑣𝑐]𝑣 is defined as a view of the

adp(𝐵, 𝑙, 𝑣𝑐 , 𝑣) assertion, which 𝐵 is the buffer. The assertions consists of two cases. If 𝑙 is not in the

buffer, then 𝑣 is in the physical disk and 𝑣𝑐 = 𝑣 . If 𝑙 is in the buffer, then 𝑣 is the buffered value and

Building Extensible Program Logics through Effect Handlers 29

𝑃 | 𝑅 N
≜ ∃𝑖 . 𝑖 ∈ N ∗ ◦{𝑖 ↦→ Ag(▶(𝑃, 𝑅))} 𝛾brw CInv(R) ≜ ◦Ex(▶R) 𝛾cinv

TokC (E)𝑅𝑐 ≜ WCBrw ⊕ E 𝐸 ⊕
(
∃𝜄. ◦Ex(𝜄) 𝛾active ∗ ◦{𝜄 ↦→ Ag(▶𝑅𝑐)}

𝛾cond
)

WCBrw ≜ ∃𝐵 : N fin−⇀ iProp × iProp,𝐶 : N fin−⇀ iProp,R : iProp.

•ag(next(𝐵)) 𝛾brw ∗ •ag(next(𝐶)) 𝛾cond ∗ •Ex(dom(𝐶)) 𝛾cinvset ∗ •Ex(▶R) 𝛾cinv ∗

©­« ∗𝑖 ↦→(𝑃,𝑅) ∈𝐵

(
⊲ 𝑃 ∗ {𝑖} 𝐷 ∨ {𝑖} 𝐸

)
∗ □(⊲ 𝑃 −∗ ⊲𝑅)ª®¬ ∗ ©­«©­« ∗(_,𝑅) ∈𝐵 ⊲𝑅ª®¬ ∗

(∗
𝑅𝑐 ∈𝐶

⊲𝑅𝑐

)
−∗ ⊲Rª®¬

Fig. 8. Model of crash borrows and crash conditions.

the value in the physical disk depends on willWB. If willWB, then the current value in the physical

disk is unknown but also unimportant because it will eventually become 𝑣 ; otherwise, the value in

the physical disk is 𝑣𝑐 . The connection between adp(𝐵, 𝑙, 𝑣𝑐 , 𝑣) and 𝑙 ↦→d [𝑣𝑐]𝑣 is enforced by the

authoritative resource algebra.

D Distributed System

specn𝛾𝑡 (𝑒) ≜ ∃𝑘, 𝑟 . {𝑘, 𝑟, 𝑡} 𝛾 ∗ loop(𝑘 𝑟, 𝑒)
loop ≜ lfp loop (𝑒0, 𝑒) . (∀𝐾. spec(𝐾 [𝑒0]) −∗ |⇛⊥ spec(𝐾 [𝑒]))
∨ (∀𝐾. spec(𝐾 [𝑒0]) −∗ ∃𝐻, 𝑡, 𝑀. spec(𝐾 [eff (recv, 𝑡) 𝐻]) ∗ 𝑡 p{lb 𝑀 ∗ loop(𝐻 [inl ()], 𝑒))
∨ (∀𝐾. spec(𝐾 [𝑒0]) −∗ ∃𝐻, 𝑠, 𝑡,𝑚,𝑀. spec(𝐾 [eff (recv, 𝑡) 𝐻]) ∗ 𝑡 p{lb 𝑀 ∗ (𝑠, 𝑡,𝑚) ∈ 𝑀

∗ loop(𝐻 [inr (𝑠, 𝑡,𝑚)], 𝑒))
It also uses the evidence accumulation technique described in §4.3, but for a given thread, in

addition to accumulating the evidence it can be executed to 𝑒 via pure steps, we now also need

to accumulate the evidence that the thread may raise recv effects later on while executing to 𝑒 .

Intuitively, the point is that if a recv executed at some point 𝑥 can return a message𝑚, then if

we delay that recv to some later time 𝑥 ′, it is still possible for it to return that same message𝑚.

This is because the set of messages is monotonically growing. This evidence that a later recv can

return a given message is accumulated in the least fixed point loop. Intuitively, loop(𝑒0, 𝑒) allows
𝑒0 to execute to 𝑒 via three ways: (1) Some pure steps. (2) First raising a recv effect that receives
nothing and then continuing with the result of recv. (3) First raising a recv effect that receives
some messages (𝑠, 𝑡,𝑚) and then continuing with the result of recv. Assertion 𝑡 p{lb 𝑀 in cases

(2) and (3) is a lower-bound resource of 𝑡 p{ ·, meaning that𝑀 is a subset of messages that have

ever been sent to address 𝑡 .

30 Zhang et al.

ADISK_LOAD(𝑢,Φ) ≜ ∃𝑙, 𝑣𝑐 , 𝑣 . 𝑢 = (adisk_load, 𝑙) ∗ 𝑙 ↦→d [𝑣𝑐]𝑣 ∗ (𝑙 ↦→d [𝑣𝑐]𝑣 −∗ Φ(𝑣))
ADISK_STORE(𝑢,Φ) ≜ ∃𝑙, 𝑣𝑐 , 𝑣,𝑤 . 𝑢 = (adisk_store, (𝑙,𝑤)) ∗ 𝑙 ↦→d [𝑣𝑐]𝑣∗

(∀𝑣 ′𝑐 ∈ {𝑤, 𝑣 ′𝑐 }. 𝑙 ↦→d [𝑣 ′𝑐]𝑤 −∗ Φ(()))

BARRIER(𝑢,Φ) ≜ ∃𝑀. 𝑢 = (barrier, ()) ∗ ©­« ∗𝑙 ↦→(𝑣𝑐 ,𝑣) ∈𝑚
𝑙 ↦→d [𝑣𝑐]𝑣

ª®¬ ∗©­«©­« ∗𝑙 ↦→(𝑣𝑐 ,𝑣) ∈𝑚
𝑣𝑐 = 𝑣 ∗ 𝑙 ↦→d [𝑣𝑐]𝑣

ª®¬ −∗ Φ(())ª®¬
(a) Protocol.

runadisk ≜ 𝜆main.
1 write ∅;
2 try main () with ret 𝑣 ⇒ 𝑣 | 𝑣 𝑘 ⇒ match 𝑣 with
3 (adisk_load, 𝑙) ⇒ let buf := read in
4 (if 𝑙 ∈ buf then 𝑘 (fst buf [𝑙])
5 else let 𝑝 := newproph, 𝑣 := disk_load 𝑙 in write ([𝑙 ↦→ (𝑣, 𝑝)]buf);𝑘 (𝑣))
6 | (adisk_store, (𝑙,𝑤)) ⇒ let buf := read in
7 (if 𝑙 ∈ buf then resolve_proph (snd buf [𝑙]) to false);
8 let 𝑝 := newproph in write([𝑙 ↦→ (𝑤, 𝑝)]buf);𝑘 ()
9 | (barrier, ()) ⇒ let buf := read in
10 iter (𝜆𝑙 (𝑣, 𝑝). resolve_proph 𝑝 to true; disk_store 𝑙 𝑣) buf ; write ∅
11 | (𝜂, 𝑣) ⇒ do (𝜂, 𝑣)

(b) Implementation.

willWB(®𝑣) ≜ ∃®𝑣 ′ . ®𝑣 = ((), true) :: ®𝑣 ′ adp(𝐵, 𝑙, 𝑣𝑐 , 𝑣) ≜ 𝑙 ∉ 𝐵 ∗ 𝑙 ↦→d 𝑣 ∗ 𝑣𝑐 = 𝑣 ∨

∃𝑝. 𝐵 [𝑙] = (𝑣, 𝑝) ∗ ∃®𝑣 . proph (𝑝, ®𝑣) ∗ (if willWB(®𝑣) then (∃𝑥 . 𝑙 ↦→d 𝑥) ∗ 𝑣𝑐 = 𝑣 else 𝑙 ↦→d 𝑣𝑐)

(c) Verification.

Fig. 9. Asynchronous Disk.

	Abstract
	1 Introduction
	2 Program Logics by Effect Handlers
	2.1 The FicusLang Calculus
	2.2 Core Ficus Logic

	3 Concurrency and Extensible Worlds
	4 Contextual Equivalence of Effectful Programs
	4.1 Background: Embedding Relational Logics into Unary Logics
	4.2 Banyan: A Relational Logic for FicusLang
	4.3 Concurrency
	4.4 Logical Relation for Contextual Equivalence

	5 Case Study: Prophecy Variables
	6 Case Study: Crash-Recovery Reasoning
	6.1 Managing the Crash Invariant
	6.2 Asynchrony and Crash-Aware Prophecies

	7 Case Study: Distributed Systems with IronFleet-Style Atomic Blocks
	8 Related Work
	References
	A Ficus
	A.1 Semantics
	A.2 Reasoning Rules
	A.3 Model

	B Prophetic Heap
	C Crash Recovery System
	C.1 Post-crash Modality
	C.2 Protocol
	C.3 Crash Hoare Logic
	C.4 Crash Borrow
	C.5 Asynchronous Disk

	D Distributed System

